Tunable graphene device demonstrated: First tool in kit for putting terahertz light to work

Sep 04, 2011
The graphene microribbon array can be tuned in three ways. Varying the width of the ribbons changes plasmon resonant frequency and absorbs corresponding frequencies of terahertz light. Plasmon response is much stronger when there is a dense concentration of charge carriers (electrons or holes), controlled by varying the top gate voltage. Finally, light polarized perpendicularly to the ribbons is strongly absorbed at the plasmon resonant frequency, while parallel polarization shows no such response. Credit: Lawrence Berkeley National Laboratory

Long-wavelength terahertz light is invisible – it's at the farthest end of the far infrared – but it's useful for everything from detecting explosives at the airport to designing drugs to diagnosing skin cancer. Now, for the first time, scientists at the U.S. Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) and the University of California at Berkeley have demonstrated a microscale device made of graphene – the remarkable form of carbon that's only one atom thick – whose strong response to light at terahertz frequencies can be tuned with exquisite precision.

"The heart of our device is an array made of ribbons only millionths of a meter wide," says Feng Wang of Berkeley Lab's Materials Sciences Division, who is also an assistant professor of physics at UC Berkeley, and who led the research team. "By varying the width of the ribbons and the concentration of charge carriers in them, we can control the collective oscillations of electrons in the microribbons."

The name for such collective oscillations of electrons is "plasmons," a word that sounds abstruse but describes effects as familiar as the glowing colors in stained-glass windows.

"Plasmons in high-frequency visible light happen in three-dimensional metal nanostructures," Wang says. The colors of medieval stained glass, for example, result from oscillating collections of electrons on the surfaces of nanoparticles of gold, copper, and other metals, and depend on their size and shape. "But graphene is only one atom thick, and its electrons move in only two dimensions. In 2D systems, plasmons occur at much lower frequencies."

The wavelength of radiation is measured in hundreds of micrometers (millionths of a meter), yet the width of the graphene ribbons in the experimental device is only one to four micrometers each.

"A material that consists of structures with dimensions much smaller than the relevant wavelength, and which exhibits optical properties distinctly different from the bulk material, is called a metamaterial," says Wang. "So we have not only made the first studies of light and plasmon coupling in graphene, we've also created a prototype for future graphene-based metamaterials in the terahertz range."

The team reports their research in Nature Nanotechnology, available in advanced online publication.

How to push the plasmons

In two-dimensional graphene, electrons have a tiny rest mass and respond quickly to electric fields. A plasmon describes the collective oscillation of many electrons, and its frequency depends on how rapidly waves in this electron sea slosh back and forth between the edges of a graphene microribbon. When light of the same frequency is applied, the result is "resonant excitation," a marked increase in the strength of the oscillation – and simultaneous strong absorption of the light at that frequency. Since the frequency of the oscillations is determined by the width of the ribbons, varying their width can tune the system to absorb different frequencies of light.

At a constant carrier density, varying the width of the graphene ribbons -- from 1 micrometer (millionth of a meter) to 4 micrometers -- changes the plasmon resonant frequency from 6 to 3 terahertz. The spectra of light transmitted through the device (right) show corresponding absorption peaks. Credit: Lawrence Berkeley National Laboratory

The strength of the light-plasmon coupling can also be affected by the concentration of charge carriers – electrons and their positively charged counterparts, holes. One remarkable characteristic of graphene is that the concentration of its charge carriers can easily be increased or decreased simply by applying a strong electric field – so-called electrostatic doping.

The Berkeley device incorporates both these methods for tuning the response to terahertz light. Microribbon arrays were made by depositing an atom-thick layer of carbon on a sheet of copper, then transferring the graphene layer to a silicon-oxide substrate and etching ribbon patterns into it. An ion gel with contact points for varying the voltage was placed on top of the graphene.

The gated graphene microarray was illuminated with terahertz radiation at beamline 1.4 of Berkeley Lab's Advanced Light Source, and transmission measurements were made with the beamline's infrared spectrometer. In this way the research team demonstrated coupling between light and plasmons that were stronger by an order of magnitude than in other 2D systems.

A final method of controlling plasmon strength and terahertz absorption depends on polarization. Light shining in the same direction as the graphene ribbons shows no variations in absorption according to frequency. But light at right angles to the ribbons – the same orientation as the oscillating electron sea – yields sharp absorption peaks. What's more, light absorption in conventional 2D semiconductor systems, such as quantum wells, can only be measured at temperatures near absolute zero. The Berkeley team measured prominent absorption peaks at room temperature.

"Terahertz radiation covers a spectral range that's difficult to work with, because until now there have been no tools," says Wang. "Now we have the beginnings of a toolset for working in this range, potentially leading to a variety of graphene-based terahertz metamaterials."

The Berkeley experimental setup is only a precursor of devices to come, which will be able to control the polarization and modify the intensity of terahertz light and enable other optical and electronic components, in applications from medical imaging to astronomy – all in two dimensions.

Explore further: Researchers make nanostructured carbon using the waste product sawdust

More information: "Graphene plasmonics for tunable terahertz metamaterials," by Long Ju, Baisong Geng, Jason Horng, Caglar Girit, Michael Martin, Zhao Hao, Hans A. Bechtel, Xiaogan Liang, Alex Zettl, Y. Ron Shen, and Feng Wang, appears in Nature Nanotechnology.

Related Stories

Bilayer graphene gets a bandgap

Jun 10, 2009

Graphene is the two-dimensional crystalline form of carbon, whose extraordinary electron mobility and other unique features hold great promise for nanoscale electronics and photonics. But there's a catch: ...

Physicists control light scattering in graphene

Mar 16, 2011

Scientists at the Lawrence Berkeley National Laboratory (Berkeley Lab) and the University of California, Berkeley have learned to control the quantum pathways determining how light scatters in graphene. Controlled ...

New material promises faster electronics

Jun 28, 2011

The novel material graphene makes faster electronics possible. Scientists at the Faculty of Electrical Engineering and Information Technology at the Vienna University of Technology (TU Vienna) developed light-detectors ...

Unzipping Carbon Nanotubes Can Make Graphene Ribbons

Apr 20, 2009

(PhysOrg.com) -- By "unzipping" carbon nanotubes, researchers have shown how to make flat graphene ribbons. Graphene, which is a one-atom-thick sheet of carbon that looks like chicken wire, has unique electrical ...

Graphene: What projections and humps can be good for

Apr 19, 2010

At present, graphene probably is the most investigated new material system worldwide. Due to its astonishing mechanical, chemical and electronic properties, it promises manifold future applications - for example ...

Light-speed nanotech: Controlling the nature of graphene

Jan 21, 2009

Researchers at Rensselaer Polytechnic Institute have discovered a new method for controlling the nature of graphene, bringing academia and industry potentially one step closer to realizing the mass production ...

Recommended for you

Nanoparticle technology triples the production of biogas

Oct 22, 2014

Researchers of the Catalan Institute of Nanoscience and Nanotechnology (ICN2), a Severo Ochoa Centre of Excellence, and the Universitat Autònoma de Barcelona (UAB) have developed the new BiogàsPlus, a technology which allows ...

Research unlocks potential of super-compound

Oct 22, 2014

Researchers at The University of Western Australia's have discovered that nano-sized fragments of graphene - sheets of pure carbon - can speed up the rate of chemical reactions.

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

Vendicar_Decarian
not rated yet Sep 05, 2011
I am pleased that Government funded the research behind these discoveries and the development of this new breakthrough technology.
2020
1 / 5 (1) Sep 05, 2011
Wha? A nice comment from you Vendi?

You feeling okay :-)
Is this what chasing Russian girls does for you?
Then by all means keep it up and snag two at a time...please!
word-to-ya-muthas