# New computer model better explains workings of tsunamis

##### September 20, 2011 by Bob Yirka report

(PhysOrg.com) -- Because they occur so infrequently, more often than not in areas where they aren’t recorded very well, scientists have been working nearly blind in trying to understand how tsunamis work once they reach shore. Now, Frederic Dias from University College in Dublin and his team of mathematical and computer scientists have developed a computer simulation that they believe explains how tsunamis work once they reach shore. They have described their findings in Physical Review Letters.

Up to now, scientists have been able to mimic how a starts, and also how it travels across vast ocean distances. What they haven’t been able to do, is mimic how they behave once they reach the shore, which is of course, the most important part, because that’s where they cause damage and loss of life. One of the stumbling blocks is the preconceived notion that it’s the first wave that is the worst.

Dias, et al, show with their model, that this is not generally the case. They say that in fact, the second, third or even fourth wave can be the worst; this is because when the first wave hits it goes up on shore as far as its will carry it, then recedes back into the ocean. When it recedes, it carries with it some energy, thus it doesn’t just gently ebb back to the ocean’s edge, it recedes quite a ways back out to sea, which means, it has some potential energy in it, so, like a pendulum, it has to fall back towards the shore and when it does, if it just happens to coincide with the next tsunami wave, the combined energy of both will cause that next wave to run both higher up into the air (the run-up) and farther up the shore (inundation).

All of this is of course very heavily impacted by the slope of the leading up to the shoreline. If there is a long leisurely slope, the energy of the wave will be spread out, meaning a low run-up. If the ocean floor has a sudden dramatic climb just as it reaches shore however, all that energy in the wave has nowhere to go but up, creating an enormous run-up, with sometimes devastating effects. Also impacting how a tsunami behaves once it hits shore is the makeup of the shore itself. Loose ground for example, might create landslides that can work the same way as the waves themselves, adding potential energy to the mix. And of course actual shorelines (and the ocean floor leading to them) have all sorts of personal characteristics that can lead to either an increase or decrease in run-up.

When Dias and his team added parameters to their model to mimic actual tsunamis, they found results that appeared to coincide with what had actually occurred, giving more credence to their findings. Even so, they are not suggesting that their model fully answers all the questions oceanographers have about tsunamis, but it’s clear their research has shed new light on how they behave and will likely lead to more accurate forecasts for tsunami impacts and the design of early warning systems.

Explore further: The science behind a tsunami

More information: Local Run-Up Amplification by Resonant Wave Interactions, Phys. Rev. Lett. 107, 124502 (2011) DOI:10.1103/PhysRevLett.107.124502

Abstract
Until now, the analysis of long wave run-up on a plane beach has been focused on finding its maximum value, failing to capture the existence of resonant regimes. One-dimensional numerical simulations in the framework of the nonlinear shallow water equations are used to investigate the boundary value problem for plane and nontrivial beaches. Monochromatic waves, as well as virtual wave-gage recordings from real tsunami simulations, are used as forcing conditions to the boundary value problem. Resonant phenomena between the incident wavelength and the beach slope are found to occur, which result in enhanced run-up of nonleading waves. The evolution of energy reveals the existence of a quasiperiodic state for the case of sinusoidal waves. Dispersion is found to slightly reduce the value of maximum run-up but not to change the overall picture. Run-up amplification occurs for both leading elevation and depression waves.

## Related Stories

#### The science behind a tsunami

March 14, 2011

The massive magnitude 8.9 earthquake that struck off the east coast Japan’s main island on March 11, 2011 set in motion a fierce tsunami that may have claimed thousands of lives, and sent tsunami warnings all across ...

#### Dutch researchers simulate breaking waves

February 28, 2011

The SWAN (Simulating WAves Nearshore) wave prediction model developed at TU Delft has been a huge international success for many years. This model predicts the distribution of wave heights close to the shore. It was recently ...

#### Mathematicians provide new insight into tsunamis

April 1, 2009

A new mathematical formula that could be used to give advance warning of where a tsunami is likely to hit and how destructive it will be has been worked out by scientists at Newcastle University.

#### Tsunami Invisibility Cloak

September 26, 2008

Rather than building stronger ocean-based structures to withstand tsunamis, it might be easier to simply make the structures disappear.

#### Powering Australia with waves

August 17, 2010

Wave energy is surging ahead as a viable source of renewable energy to generate electricity -- with Australia's southern margin identified by the World Energy Council as one of the world's most promising sites for wave-energy ...

#### New tsunami software will help protect vulnerable coastal communities

September 19, 2011

A new piece of software has been developed to help protect vulnerable coastal communities from the destruction of a tsunami. The mathematical model has created significant interest in the wake of the 2011 earthquake and tsunami ...

## Recommended for you

#### Researchers use an optical technique to probe magnetism at a hidden interface between two exotic thin films

October 26, 2016

Magnetic properties of materials underlie technologies from old-fashioned recording tape to modern hard drives, and scientists are constantly pushing to develop new uses from magnetic behavior. Recently, researchers at MIT ...

#### Precise quantum cloning: Possible pathway to secure communication

October 26, 2016

Physicists at The Australian National University (ANU) and University of Queensland (UQ) have produced near-perfect clones of quantum information using a new method to surpass previous cloning limits.

#### Researchers discover new rules for quasicrystals

October 25, 2016

Crystals are defined by their repeating, symmetrical patterns and long-range order. Unlike amorphous materials, in which atoms are randomly packed together, the atoms in a crystal are arranged in a predictable way. Quasicrystals ...

#### How often do quantum systems violate the second law of thermodynamics?

October 25, 2016

The likelihood of seeing quantum systems violating the second law of thermodynamics has been calculated by UCL scientists.

#### Fluorescent holography: Upending the world of biological imaging

October 25, 2016

Optical microscopy experts at Colorado State University are once again pushing the envelope of biological imaging.

#### Making silicon-germanium core fibers a reality

October 25, 2016

Glass fibres do everything from connecting us to the internet to enabling keyhole surgery by delivering light through medical devices such as endoscopes. But as versatile as today's fiber optics are, scientists around the ...