Researchers identify signals triggering dendrite growth

Sep 20, 2011

A study in worms that are less than a millimetre long has yielded clues that may be important for understanding how nerves grow.

A team of researchers from the Queensland Brain Institute (QBI) has probed the molecular mechanisms which prompt the development of dendrites, in the nematode . The findings are published September 20 in the online, open access journal .

Dendrites are the branch-like structures in nerve cells, which receive from other or sensory inputs from the external environment.

Along with the cable-like structures called axons, which transmit between neurons, dendrites are crucial to nervous system function but their development has been poorly understood to date.

However, the QBI team has discovered that a ligand called LIN-44 and a receptor called LIN-17 work together to coax certain neurons in C. elegans to extend dendrites towards their targets.

"This is the first study to demonstrate, in vivo, that the initial outgrowth of a dendrite is controlled by these ligands and receptors," says Leonie Kirszenblat, the research assistant who carried out the study in the lab of Dr Massimo Hilliard.

Understanding these fundamental mechanisms of neuronal development may have practical, as well as theoretical implications, says Dr Hilliard.

"Having the ability to control dendritic growth may be important for growing neurons from stem cells, which could be useful in a range of neurologic conditions, including spinal injury," he says.

Explore further: Recreating the stripe patterns found in animals by engineering synthetic gene networks

More information: Kirszenblat L, Pattabiraman D, Hilliard MA (2011) LIN-44/Wnt Directs Dendrite Outgrowth through LIN-17/Frizzled in C. elegans Neurons. PLoS Biol 9(9): e1001157. doi:10.1371/journal.pbio.1001157

add to favorites email to friend print save as pdf

Related Stories

Researchers probe nervous system repair

Mar 30, 2011

(PhysOrg.com) -- In humans, regeneration of the peripheral nervous system after injury remains a hit-or-miss affair, while brain and spinal cord damage usually results in lifelong disabilities.

What makes an axon an axon?

Nov 10, 2008

Inside every axon is a dendrite waiting to get out. Hedstrom et al. converted mature axons into dendrites by banishing a protein crucial for neuron development. The results suggest that this transformation could occur after ...

Recommended for you

Being sheepish about climate adaptation

2 hours ago

For thousands of years, man has domesticated animals, selecting the best traits possible for survival. Now, livestock such as sheep offer an intriguing animal to examine adaptation to climate change, with a genetic legacy ...

User comments : 0