Temperature controls the genetic message

September 16, 2011

Alternative splicing, the mechanism enabling a gen to encode different proteins, according to the cell's needs, still holds many secrets. It has transformed the initial theory of one gen, one protein, but how it is controlled remains poorly understood.

A team of scientists at the CSIC has shown that temperature can play a critical role in the control of splicing. The team led by Josep Vilardell, ICREA scientist at the CSIC's Molecular Biology Institute of Barcelona, Spain, has demonstrated that temperature, through its effects on RNA structure, can control how the will be processed. The results of this work are published this week in Molecular Cell.

For some time, scientists have been trying to understand how the spliceosome -the molecular 'machine' responsible for splicing- works to generate a mRNA () with capacity for generating the right protein. During splicing, the spliceosome selects internal sequence fragments, in a process where it cuts the RNA at specific points: the endings of the introns. Then, it joins the fragments to generate the new mRNA.

It is known that errors in splicing can be lethal. The question is, Vilardell points out, "how does the splicesome choose the right intronic endings? We have tried to find out an answer with the . It has a small and well characterized , with a reduced set of known introns. This helped us to simplify our approach".

With their work, researchers have found that within a small range of temperature, from 23 to 37 C degrees, some yeast RNAs change their structure, either hiding or showing particular sequences. As the splicesome uses all the cut points that are accessible, but not the ones that are hidden, the result is that the intron is differently recognized, which eventually will generate two different proteins.

Scientists have shown that temperature and the inherent RNA flexibility allows for "an autonomous strategy of control of RNA processing. It was known that temperature affects RNA structure, and now we find that this has important consequences for the splicing".

¿What are the implications of this alternative RNA processing? Vilardell explains that "in the yeast gene where we have found this, the hypothesis is that this phenomenon affects the stability of the encoded protein or its capacity for interacting with other molecules."

Now, adds Vilardell, "we are very interested in studying what happens in other, more complex, organisms. There is no reason to think that this strategy is not used in mammals, where the effects could be more relevant from the health perspective".

There are situations where our organism changes temperature, and a specific splicing for these situations could be taking place. Maybe the most obvious example is when we have a fever, says Vilardell. Some RNAs may have acquired the capacity to respond to subtle temperature variations through small structure changes. In addition, there are biological processes that need a specific temperature (such as the spermatozoid production) and optimal genetic expression could use a proper folding of the RNAs of the genes that are specifically expressed.

Another scenario is centered on the need of a quick adaptation of gene expression to sudden changes in temperature. "This implies the generation of new protein isoforms, as well as of RNAs that have lost their coding potential, avoiding the synthesis of proteins that could be harmful under these conditions. Our data show that this quick response can be mediated by the RNA structure itself".

Explore further: Yale scientists visualize the machinery of mRNA splicing

Related Stories

Yale scientists visualize the machinery of mRNA splicing

April 5, 2008

Recent research at Yale provided a glimpse of the ancient mechanism that helped diversify our genomes; it illuminated a relationship between gene processing in humans and the most primitive organisms by creating the first ...

Spying on a cellular director in the cutting room

March 21, 2010

Like a film director cutting out extraneous footage to create a blockbuster, the cellular machine called the spliceosome snips out unwanted stretches of genetic material and joins the remaining pieces to fashion a template ...

New mechanism in the regulation of human genes

July 14, 2011

Scientists at the Technical University of Munich and the Helmholtz Zentrum Muenchen and along with their colleagues from the European Molecular Biology Laboratory (EMBL) in Heidelberg and the Centre for Genomic Regulation ...

Recommended for you

Genomes uncover life's early history

August 24, 2015

A University of Manchester scientist is part of a team which has carried out one of the biggest ever analyses of genomes on life of all forms.

Rare nautilus sighted for the first time in three decades

August 25, 2015

In early August, biologist Peter Ward returned from the South Pacific with news that he encountered an old friend, one he hadn't seen in over three decades. The University of Washington professor had seen what he considers ...

Why a mutant rice called Big Grain1 yields such big grains

August 24, 2015

(Phys.org)—Rice is one of the most important staple crops grown by humans—very possibly the most important in history. With 4.3 billion inhabitants, Asia is home to 60 percent of the world's population, so it's unsurprising ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.