New technique uses genomes to examine human migrations

Sep 20, 2011 By Krishna Ramanujan
The study shows that the San people - like the man shown here - split from other African populations about 130,000 years ago.

(PhysOrg.com) -- Cornell researchers have developed new statistical methods based on the complete genome sequences of people alive today to shed light on events at the dawn of human history.

They applied their methods to the genomes of individuals of East Asian, European, and western and southern African descent. They analyzed only six genomes, but made use of the fact that these genomes contain traces of from thousands of , which have been assembled into new combinations over the millennia by .

The main finding of the study, published Sept. 18 in , is that the San, an indigenous group of hunter gatherers from southern Africa, diverged from other earlier than previously thought -- about 130,000 years ago. In comparison, the ancestors of modern Eurasian populations migrated from Africa only about 50,000 years ago.

Previous studies of human demography have primarily relied on mitochondrial DNA from the maternal line or Y-chromosome data passed from fathers to their sons, but those studies are limited by small numbers of genomic positions. This study uses the full of each individual, providing a richer, more complete picture of human evolution, according to the researchers.

"The use of genomewide data gives you much more confidence that you are getting the right answer," said Adam Siepel, associate professor of biological statistics and , and senior author of the paper. "With mitochondrial DNA, you are only looking at one family tree [the ], with one pathway from each individual to its ancestors. We are sampling from all possible pathways."

"What's unusual about our methods is that, not only do they use complete genome sequences, but they consider several populations at once," said Ilan Gronau, the paper's lead author and a postdoctoral associate in Siepel's lab. "This is the first paper to put all of these pieces together," he added.

Previous studies using mitochondrial DNA, Y chromosomes and other markers have estimated that anatomically, modern humans arose roughly 200,000 years ago in eastern or southern Africa; and that the indigenous hunting-and-gathering central and southern African San people -- one of the most genetically divergent human populations -- diverged from other Africans about 100,000 years ago.

But this study shows that the San people split from other African populations about 130,000 years ago (somewhere between 108,000 and 157,000 years ago). The estimate of an "out of Africa" migration of about 50,000 years ago (somewhere between 38,000 and 64,000 years ago) is consistent with recent findings using other methods, the researchers said.

To conduct the study, the researchers began with a statistical approach that was originally developed to infer divergence times for related but distinct species, such as the human, chimpanzee and gorilla. They faced a number of challenges in adapting these methods for use with human genome sequences. For example, the great ape genome method assumes that gene flow stops after two species diverge, because they can no longer mate. That is not true for distinct human populations, and without accounting for gene flow, the divergence times would have been underestimated, Siepel said.

Gronau used mathematical techniques to work around that problem and then created elaborate computer simulations to demonstrate that the new method worked within known parameters of human divergence.

Explore further: Heaven scent: Finding may help restore fragrance to roses

Related Stories

New ancestor? Scientists ponder DNA from Siberia

Mar 24, 2010

(PhysOrg.com) -- An international team of scientists from the Max Planck Institute for Evolutionary Anthropology in Leipzig has sequenced ancient mitochondrial DNA from a finger bone found in southern Siberia. ...

Long lost sisters

May 15, 2008

The human race was divided into two separate groups within Africa for as much as half of its existence, says a Tel Aviv University mathematician. Climate change, reduction in populations and harsh conditions may have caused ...

Early human populations evolved separately for 100,000 years

Apr 24, 2008

A team of Genographic researchers and their collaborators have published the most extensive survey to date of African mitochondrial DNA (mtDNA). Over 600 complete mtDNA genomes from indigenous populations across the continent ...

Humans were once an endangered species

Jan 21, 2010

(PhysOrg.com) -- Scientists from the University of Utah in Salt Lake City in the U.S. have calculated that 1.2 million years ago, at a time when our ancestors were spreading through Africa, Europe and Asia, ...

Recommended for you

Study on pesticides in lab rat feed causes a stir

Jul 02, 2015

French scientists published evidence Thursday of pesticide contamination of lab rat feed which they said discredited historic toxicity studies, though commentators questioned the analysis.

International consortium to study plant fertility evolution

Jul 02, 2015

Mark Johnson, associate professor of biology, has joined a consortium of seven other researchers in four European countries to develop the fullest understanding yet of how fertilization evolved in flowering plants. The research, ...

Making the biofuels process safer for microbes

Jul 02, 2015

A team of investigators at the University of Wisconsin-Madison and Michigan State University have created a process for making the work environment less toxic—literally—for the organisms that do the heavy ...

Why GM food is so hard to sell to a wary public

Jul 02, 2015

Whether commanding the attention of rock star Neil Young or apparently being supported by the former head of Greenpeace, genetically modified food is almost always in the news – and often in a negative ...

The hidden treasure in RNA-seq

Jul 01, 2015

Michael Stadler and his team at the Friedrich Miescher institute for Biomedical Research (FMI) have developed a novel computational approach to analyze RNA-seq data. By comparing intronic and exonic RNA reads, ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.