How the bat got its buzz: Superfast muscles in mammals

Sep 29, 2011
bat

As nocturnal animals, bats rely echolocation to navigate and hunt prey. By bouncing sound waves off objects, including the bugs that are their main diet, bats can produce an accurate representation of their environment in total darkness. Now, researchers at the University of Southern Denmark and the University of Pennsylvania have shown that this amazing ability is enabled by a physical trait never before seen in mammals: so-called "superfast" muscles.

The work was conducted by Coen Elemans, John Ratcliffe and Lasse Jakobsen of Denmark, along with Andrew Mead, a graduate student in the Department of Biology in Penn's School of Arts and Science.

Their findings will appear in the journal Science.

Superfast muscles are capable of contraction about 100 times faster than typical body muscles and as much as 20 times faster than the fastest human muscles, those that control eye movement. Mead, who studies muscle physiology, and Elemans, who studies neuroscience and biomechanics, had previously collaborated in studying how superfast muscles help birds sing.

"Superfast muscles were previously known only from the sound-producing organs of rattlesnakes, birds and several fish," Elemans said. "Now we have discovered them in mammals for the first time, suggesting that these muscles – once thought extraordinary – are more common than previously believed."

With vision, animals receive a more-or-less continuous stream of information about the world. With echolocation, however, bats only get a snapshot of their environment with each call and echo, requiring them to make rapid successions of calls. When hunting a flying insect that can quickly move in any direction, bats need the most rapid updates on their prey's position in the instant before the catch. At this critical point, bats produce what is known as the "terminal buzz," where they make as many as 190 calls per second.

"Bat researchers assumed that the muscles that control this behavior must be pretty fast, but there was no understanding of how they worked," Mead said. "Research on superfast muscles is just a world apart from what they do. This study represents many worlds coming together: the muscle world, that bio-acoustics and echolocation world and the bat behavioral world."

The researchers tested the performance of the bats' vocal muscles by attaching one between a motor and a force sensor and electrically stimulating it to flex. When the motor was stationary, a single electric pulse allowed the researchers to measure the time that bat muscle took to twitch, or to contract and relax.

"The twitch gives us a sense of the time it takes for a muscle cell to go though all the steps, all the chemical reactions, necessary exert force and to relax again," Mead said. "The faster the muscle, the shorter the twitch. These muscles could go through all the motions in less than a hundredth of a second."

To approximate how much work the muscle was doing within the bat, however, the researchers had to change the length of the muscle while it was contracting. When the motor was on, it lengthened and shortened the muscle at a controllable rate. While the muscle was being stretched, the researchers stimulated the muscle to contract, so they could see if the muscle pulled on the motor harder than the motor pulled on the muscle.

The test to see if the muscle was truly of the superfast type involved increasing the speed of the motor to more than a 100 oscillations per second.

"You're always limited to how many twitches you can do in a given period of time," Mead said. "If you keep on increasing the frequency, doing twitch after twitch, you get to the point where the twitches begin to build on top of each other and the muscle doesn't fully turn off. We went to the highest cycling frequency where we still had evidence that the muscle was turning on and off. "

The researchers also did an experiment in which bats hunted insects in a chamber wired with microphones in order to determine the theoretical maximum frequency for a buzz without overlapping echoes, which could confuse the bat.

"We determined the power the muscles can deliver, much like how you measure a car's performance," Denmark's Elemans said. "We were surprised to see that bats have the superfast muscle type and can power movements up to 190 times per second, but also that it is actually the muscles that limit the maximum call rate during the buzz."

"You can think of it like a car engine," Mead said. "It can be tuned to be efficient, or tuned to be powerful depending on what you want it to do. It turns out that bats trade off a lot of force to be able to get these rapid oscillations. In a way it's like an engine that's been tuned for extremely high RPM."

Mead and Elemans plan further study of superfast muscles from a molecular and genetic perspective.

"With more and more genomes being sequenced, including one species of bat, and one from a bird we've studied,' Mead said, "we have some powerful tools to start pick apart whether or not similar genes are involved in various important roles."

Explore further: Danish museum discovers unique gift from Charles Darwin

Provided by University of Pennsylvania

5 /5 (2 votes)

Related Stories

Superfast muscles in songbirds

Jul 09, 2008

Certain songbirds can contract their vocal muscles 100 times faster than humans can blink an eye – placing the birds with a handful of animals that have evolved superfast muscles, University of Utah researchers ...

Bats' echolocation recorded for human exploit

May 11, 2010

Bats' remarkable ability to 'see' in the dark uses the echoes from their own calls to decipher the shape of their dark surroundings. This process, known as echolocation, allows bats to perceive their surroundings ...

Bats recognize the individual voices of other bats

Jun 05, 2009

Bats can use the characteristics of other bats' voices to recognize each other, according to a study by researchers from the University of Tuebingen, Germany and the University of Applied Sciences in Konstanz, Germany. The ...

Roaring bats

Apr 30, 2008

Annemarie Surlykke from the Institute of Biology, SDU, Denmark, and her colleague, Elisabeth Kalko, from the University of Ulm, Germany, studied the echolocation behavior in 11 species of insect-eating tropical bats from ...

Why does rain keep bats grounded?

May 05, 2011

(PhysOrg.com) -- In a new study published in Biology Letters, researcher Christian Voigt from the Leibniz Institute for Zoo and Wildlife Research in Germany details their findings on Sowell’s short-tailed bats a ...

Keeping an ear out for kin

May 18, 2010

(PhysOrg.com) -- Bats can distinguish between the calls of their own and different species with their echolocation calls, report German scientists of the Max Planck Institute for Ornithology in Seewiesen. ...

Recommended for you

Danish museum discovers unique gift from Charles Darwin

Aug 29, 2014

The Natural History Museum of Denmark recently discovered a unique gift from one of the greatest-ever scientists. In 1854, Charles Darwin – father of the theory of evolution – sent a gift to his Danish ...

Top ten reptiles and amphibians benefitting from zoos

Aug 29, 2014

A frog that does not croak, the largest living lizard, and a tortoise that can live up to 100 years are just some of the species staving off extinction thanks to the help of zoos, according to a new report.

User comments : 0