Submerged atomic resolution imaging of calcium carbonate crystal surface

Sep 05, 2011 By Mikiko Tanifuji
Atomic sequences of a calcite (1014) surface and an aragonite (001) surface along with their model drawings (bottom). Blue indicates the calcium atoms in calcite; red, the oxygen atoms; and green, the calcium atoms in aragonite. Credit: National Institute for Materials Science

Hard tissues of organisms, such as bones and shells, are composed of inorganic minerals (biominerals). While these substances are created by biomineralization, which will be discussed later, many uncertainties remain in the mechanism.

Research scientists at Tohoku University, Japan, have been conducting studies designed to elucidate the crystal growth mechanisms of shells, in which a calcium carbonate crystal, which is normally stable only in a high-pressure phase, is formed under normal temperature and pressure conditions. It is necessary to observe the atomic structural changes of the growing crystal surface in solution. Under such circumstances, a system capable of high-resolution surface observation in a liquid environment would be ideal.

Changes in the atomic sequence of the calcite substrate surface with an added growth solution containing the synthetic polypeptide and magnesium. The period required for one scan in this case was approximately 8 seconds. Credit: National Institute for Materials Science

Tsukamoto and Araki learned that the atomic force microscope (AFM) probe system developed by the Yamada group at Kyoto University could operate under such conditions and was available for use via the Kyoto Advanced Nanotechnology Network; an application was made for joint utilization and support. By using the FM-AFM system, based on leading-edge frequency-modulation (FM-AFM) technology, they successfully observed the crystal growth process in solution on the atomic level.

Explore further: In-situ nanoindentation study of phase transformation in magnetic shape memory alloys

More information: nanonet.nims.go.jp/english/magazine/?Vol.%204%2C%20No.%204%2C%202011-08-24%2FFocus%2026-18

Provided by National Institute for Materials Science

5 /5 (1 vote)
add to favorites email to friend print save as pdf

Related Stories

First images of barnacle larva's footprint

Oct 27, 2008

(PhysOrg.com) -- The fouling or growth of sea organisms, such as barnacles, on ships’ hulls causes damage costing many billions of euros annually. In order to prevent this fouling, In Yee Phang of the University ...

Recommended for you

'Exotic' material is like a switch when super thin

Apr 18, 2014

(Phys.org) —Ever-shrinking electronic devices could get down to atomic dimensions with the help of transition metal oxides, a class of materials that seems to have it all: superconductivity, magnetoresistance ...

User comments : 0

More news stories

NASA's space station Robonaut finally getting legs

Robonaut, the first out-of-this-world humanoid, is finally getting its space legs. For three years, Robonaut has had to manage from the waist up. This new pair of legs means the experimental robot—now stuck ...

Ex-Apple chief plans mobile phone for India

Former Apple chief executive John Sculley, whose marketing skills helped bring the personal computer to desktops worldwide, says he plans to launch a mobile phone in India to exploit its still largely untapped ...

Filipino tests negative for Middle East virus

A Filipino nurse who tested positive for the Middle East virus has been found free of infection in a subsequent examination after he returned home, Philippine health officials said Saturday.

Egypt archaeologists find ancient writer's tomb

Egypt's minister of antiquities says a team of Spanish archaeologists has discovered two tombs in the southern part of the country, one of them belonging to a writer and containing a trove of artifacts including reed pens ...