Submerged atomic resolution imaging of calcium carbonate crystal surface

Sep 05, 2011 By Mikiko Tanifuji
Atomic sequences of a calcite (1014) surface and an aragonite (001) surface along with their model drawings (bottom). Blue indicates the calcium atoms in calcite; red, the oxygen atoms; and green, the calcium atoms in aragonite. Credit: National Institute for Materials Science

Hard tissues of organisms, such as bones and shells, are composed of inorganic minerals (biominerals). While these substances are created by biomineralization, which will be discussed later, many uncertainties remain in the mechanism.

Research scientists at Tohoku University, Japan, have been conducting studies designed to elucidate the crystal growth mechanisms of shells, in which a calcium carbonate crystal, which is normally stable only in a high-pressure phase, is formed under normal temperature and pressure conditions. It is necessary to observe the atomic structural changes of the growing crystal surface in solution. Under such circumstances, a system capable of high-resolution surface observation in a liquid environment would be ideal.

Changes in the atomic sequence of the calcite substrate surface with an added growth solution containing the synthetic polypeptide and magnesium. The period required for one scan in this case was approximately 8 seconds. Credit: National Institute for Materials Science

Tsukamoto and Araki learned that the atomic force microscope (AFM) probe system developed by the Yamada group at Kyoto University could operate under such conditions and was available for use via the Kyoto Advanced Nanotechnology Network; an application was made for joint utilization and support. By using the FM-AFM system, based on leading-edge frequency-modulation (FM-AFM) technology, they successfully observed the crystal growth process in solution on the atomic level.

Explore further: Study reveals new characteristics of complex oxide surfaces

More information: nanonet.nims.go.jp/english/mag… 8-24%2FFocus%2026-18

Provided by National Institute for Materials Science

5 /5 (1 vote)
add to favorites email to friend print save as pdf

Related Stories

First images of barnacle larva's footprint

Oct 27, 2008

(PhysOrg.com) -- The fouling or growth of sea organisms, such as barnacles, on ships’ hulls causes damage costing many billions of euros annually. In order to prevent this fouling, In Yee Phang of the University ...

Recommended for you

A crystal wedding in the nanocosmos

Jul 23, 2014

Researchers at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR), the Vienna University of Technology and the Maria Curie-Skłodowska University Lublin have succeeded in embedding nearly perfect semiconductor ...

PPPL studies plasma's role in synthesizing nanoparticles

Jul 22, 2014

DOE's Princeton Plasma Physics Laboratory (PPPL) has received some $4.3 million of DOE Office of Science funding, over three years, to develop an increased understanding of the role of plasma in the synthesis ...

User comments : 0