How plants space out the pores through which they breathe

Sep 08, 2011

The way in which plants space out the pores through which they breathe depends on keeping a protein active during stem cell growth, according to John Innes Centre scientists.

Plant pores, called , are essential for life. When they evolved about 400 million years ago, they helped plants conquer the land. Plants absorb carbon dioxide through stomata and release oxygen and as part of the Earth's carbon and water cycles.

Stomata need to be evenly spaced to maximise breathing capacity. But how they establish an even spatial pattern during plant growth has been a mystery.

In a paper to be published in Science, the JIC scientists show that the ability of cells to divide and form stomata is retained in only one of the two generated by each division. This pattern, known as stem cell behaviour, is also found in certain , like those that form skin or bone.

In the case of stomata, the stem cell property depends on a protein called SPEECHLESS (SPCH) being kept active in a single daughter cell. The daughter cell is kept at the centre of her cellular relatives through a sort of molecular dance through which the polarity of cells switches at each division. The daughter eventually forms a stoma, surrounded by non-stomatal relatives, ensuring that the stomatal pores are spaced out.

"Unravelling this mechanism was only possible because of advances in live imaging and computational modelling," said Professor Enrico Coen from JIC, the centre strategically funded by Biotechnology and Biological Sciences Research Council (BBSRC).

The computer modelling predicted rules that the scientists were able to validate experimentally in the plant Arabidopsis. They tracked various markers such as a fluorescent protein to see the patterns that formed in growing leaves.

The research could help scientists to tailor the number and arrangement of stomata to different environments. This could regulate the efficiency at which absorb carbon dioxide or diffuse water vapour.

Explore further: In between red light and blue light: Researchers discover new functionality of molecular light switches

Provided by Norwich BioScience Institutes

3 /5 (2 votes)
add to favorites email to friend print save as pdf

Related Stories

Adjustable valves gave ancient plants the edge

Jun 09, 2011

Controlling water loss is an important ability for modern land plants as it helps them thrive in changing environments. New research from the University of Bristol, published today in the journal Current Biology, shows ...

Protein that triggers plant cell division

Jun 11, 2009

From the valves in a human heart to the quills on a porcupine to the petals on a summer lily, the living world is as varied as it is vast. For this to be possible, the cells that make up these living things must be just as ...

Gene helps plants use less water without biomass loss

Jan 11, 2011

(PhysOrg.com) -- Purdue University researchers have found a genetic mutation that allows a plant to better endure drought without losing biomass, a discovery that could reduce the amount of water required for growing plants ...

Recommended for you

Reading a biological clock in the dark

4 hours ago

Our species' waking and sleeping cycles – shaped in millions of years of evolution – have been turned upside down within a single century with the advent of electric lighting and airplanes. As a result, ...

Scientists see how plants optimize their repair

23 hours ago

Researchers led by a Washington State University biologist have found the optimal mechanism by which plants heal the botanical equivalent of a bad sunburn. Their work, published in the Proceedings of the Na ...

User comments : 0