Organic solar cell breakthrough

Sep 15, 2011
Photoconducting Atomic Force Microscopy (pc-AFM) image of a smooth polymer-nanowire based organic solar cell

NPL scientists have achieved a significant breakthrough in the metrology of organic photovoltaics – a solar power technology. The research demonstrated a new type of atomic force microscopy that can 'see' down into a working organic photovoltaic cell and relate its three-dimensional nanoscale structure to its performance.

Photovoltaic have become a much more common sight over recent years, often installed on rooftops where they quietly convert sunlight into clean electricity for homes and businesses.

An organic photovoltaic cell is a type of solar cell that uses organic (carbon-based) electronics and could potentially be a cheaper, more efficient and flexible alternative to today's photovoltaic systems. The technology is on the verge of commercialisation but several obstacles remain, including a necessary increase in performance.

Many recent advances have occurred due to recognition of the pivotal role that morphology plays in efficiency, but it was previously difficult to measure exactly how form and structure affect electrical characteristics and therefore performance.

A schematic drawing of the set-up used for pc-AFM measurements.

This research demonstrated that it is possible to obtain structural and electrical information, both on the surface and below the surface to a depth of at least 20 nanometres in operating organic solar cells. The new measurement method is based on a technique called photoconducting atomic force microscopy (pc-AFM) that uses a nanoscale probe to measure topography and photocurrent generation at the same time.

This technique can provide direct correlation between the nanometre scale morphology of a working organic solar cell and its performance characteristics.

This breakthrough will improve understanding of the technology, allowing manufacturers to improve the efficiency of their products by optimising the nanometre scale structure of the organic photovoltaic material.

The work has benefited from strong links with Imperial College London, who contributed with their material and device fabrication expertise.

A manuscript describing the research has been published in Energy and Environmental Science.

Explore further: In-situ nanoindentation study of phase transformation in magnetic shape memory alloys

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

'Exotic' material is like a switch when super thin

Apr 18, 2014

(Phys.org) —Ever-shrinking electronic devices could get down to atomic dimensions with the help of transition metal oxides, a class of materials that seems to have it all: superconductivity, magnetoresistance ...

User comments : 0

More news stories

Making graphene in your kitchen

Graphene has been touted as a wonder material—the world's thinnest substance, but super-strong. Now scientists say it is so easy to make you could produce some in your kitchen.

Growing app industry has developers racing to keep up

Smartphone application developers say they are challenged by the glut of apps as well as the need to update their software to keep up with evolving phone technology, making creative pricing strategies essential to finding ...