New 'smart window' system with unprecedented performance

Sep 21, 2011

A new "smart" window system has the unprecedented ability to inexpensively change from summer to winter modes, darkening to save air conditioning costs on scorching days and returning to crystal clarity in the winter to capture free heat from the sun, scientists are reporting. Their study appears in the journal ACS Nano.

Ho Sun Lim, Jeong Ho Cho, Jooyong Kim and Chang Hwan Lee point out that the drive for has fostered efforts to develop new types of window glass for everything from skylights and windows in houses to conference room walls in offices. "Smart" windows that reflect sunlight away from buildings in summer and switch back to full transparency in winter already are available. But they have many drawbacks, including high cost, rapid deterioration in performance, and that involve potentially . So, the researchers set out to develop a smart window that overcomes these drawbacks.

They discovered that using a polymer, so-called "counterions" and a solvent such as was an inexpensive and less harsh way to make a stable, robust smart window. It has the added advantage of being extremely tunable — quickly and easily switching from 100% opaque to almost completely clear in seconds. "To our knowledge, such extreme optical switching behavior is unprecedented among established smart windows," the authors state. "This type of light control system may provide a new option for saving on heating, cooling and lighting costs through managing the light transmitted into the interior of a house."

Explore further: Researcher customizes nanoscale systems for large-scale impact in light and energy

More information: Counterion-Induced Reversibly Switchable Transparency in Smart Windows, ACS Nano, Article ASAP. DOI: 10.1021/nn202328y

Abstract
Smart windows that can reversibly alternate between extreme optical characteristics via clicking counteranions of different hydration energies were developed on glass substrates through the facile spray-casting of poly[2-(methacryloyloxy)ethyltrimethylammonium chloride-co-3-(trimethoxysilyl)propyl methacrylate]. The optical transmittance was either 90.9% or 0% over the whole spectral range when alternately immersed in solutions containing thiocyanate (SCN–) or bis(trifluoromethane)sulfonimide (TFSI–) ions, respectively. The extreme optical transitions were attributed to formation of microporous structures via the molecular aggregation of polyelectrolyte chains bearing TFSI– ions in methanol. Because the smart windows were either highly transparent toward or completely blocking of incident light upon direct counterion exchange, this kind of nanotechnology may provide a new platform for efficiently conserving on energy usage in the interior of buildings.

Related Stories

Smart Windows: Energy Efficiency with a View

Jan 25, 2010

(PhysOrg.com) -- Buildings consume 40 percent of our nation's energy. NREL is testing and researching electrochromic windows that could knock that back significantly.

Tunable Windows To Keep Office Secrets

Dec 13, 2004

Secrets that zip across offices through wireless computing networks all too easily also zip through office windows into the hands of competitors – now researchers at the University of Warwick have devised a method of producing ...

Opening a new window on daylight

Jul 31, 2009

A new approach to windows that could let in more light and cut indoor lighting needs by up to 99% in buildings in Tropical regions without losing the cooling effect of shades. Details are reported in the International Jo ...

Recommended for you

Copper shines as flexible conductor

1 hour ago

Bend them, stretch them, twist them, fold them: modern materials that are light, flexible and highly conductive have extraordinary technological potential, whether as artificial skin or electronic paper.

Nanoparticles may aid oil recovery, frack fluid tracking

3 hours ago

Two Colorado State University researchers are examining how nanoparticles move underground, knowledge that could eventually help improve recovery in oil fields and discover where hydraulic fracking chemicals ...

Nanostructure enlightening dendrite-free metal anode

Aug 19, 2014

Graphite anodes have been widely used for lithium ion batteries (LIBs) during the past two decades. The replacement of metallic lithium with graphite enables safe and highly efficient operation of LIBs, however, ...

User comments : 0