Slowest crystal growth ever measured

Sep 13, 2011 by Deborah Braconnier report
Cave of Crystals, Naica, Mexico. Image credit: Skylar

( -- Deep within a silver and lead mine in Naica, Mexico, scientists discovered what is now known as Cueva de los Cristales, or Cave of Crystals, close to a decade ago. The gypsum crystals found in this cave measure as long as 11 meters (36 feet) and as thick as 1 meter (3 feet). While these crystals are beautiful and reminiscent of a Superman film, they have had scientists stumped since their discovery. The question was just how long these crystals had been growing in order to become this large.

Because growing a giant crystal in a laboratory creates difficulties because of the timescale required, they were unable to make an accurate guess as to the age of these . However, thanks to a team of researchers from Spain and Japan and a new analytical technique, the age and the of these crystals has been determined and they have been a long time in the making. As much as 1 million years in the making. The researchers study has been published in the September 12 online version of the .

The new technique utilizes a beam of white light aimed at the crystal to determine its properties. Scientists determined that the gypsum crystalized within the at temperatures between 54 and 58 degrees , or 129 to 136 degrees . By submersing the crystal in mineral rich water, similar to what would have flowed in the cave before it was drained in 1975, the researchers discovered that the slowest growth would have occurred when the cave was 55 degrees Celsius. At this temperature, the crystals would have taken 990,000 years to form with a diameter of 1 meter. By increasing the temperature in the cave by one degree, or 56 degrees Celsius, the same size crystal could have formed in a little less than half the time, or around 500,000 years. This possible growth rate would work out to around a billionth of a meter of growth per day and is the slowest growth rate that has ever been measured.

This video is not supported by your browser at this time.
Time course of the surface morphology of the {010} face of a gypsum crystal in contact with Milli-Q water at room temperature (22.5 C). Movie: PNAS, doi: 10.1073/pnas.1105233108

After determining that these crystals could very well be close to a million years old, the researchers are now hoping to look for microscopic liquid pockets within the crystals in the hopes of finding possible microorganisms inside.

Explore further: Pseudoparticles travel through photoactive material

More information: Ultraslow growth rates of giant gypsum crystals, PNAS, Published online before print September 12, 2011, doi:10.1073/pnas.1105233108

Mineralogical processes taking place close to equilibrium, or with very slow kinetics, are difficult to quantify precisely. The determination of ultraslow dissolution/precipitation rates would reveal characteristic timing associated with these processes that are important at geological scale. We have designed an advanced high-resolution white-beam phase-shift interferometry microscope to measure growth rates of crystals at very low supersaturation values. To test this technique, we have selected the giant gypsum crystals of Naica ore mines in Chihuahua, Mexico, a challenging subject in mineral formation. They are thought to form by a self-feeding mechanism driven by solution-mediated anhydrite-gypsum phase transition, and therefore they must be the result of an extremely slow crystallization process close to equilibrium. To calculate the formation time of these crystals we have measured the growth rates of the {010} face of gypsum growing from current Naica waters at different temperatures. The slowest measurable growth rate was found at 55 °C, 1.4 ± 0.2 × 10-5 nm/s, the slowest directly measured normal growth rate for any crystal growth process. At higher temperatures, growth rates increase exponentially because of decreasing gypsum solubility and higher kinetic coefficient. At 50 °C neither growth nor dissolution was observed indicating that growth of giant crystals of gypsum occurred at Naica between 58 °C (gypsum/anhydrite transition temperature) and the current temperature of Naica waters, confirming formation temperatures determined from fluid inclusion studies. Our results demonstrate the usefulness of applying advanced optical techniques in laboratory experiments to gain a better understanding of crystal growth processes occurring at a geological timescale.

Related Stories

Paving the Way for Crystal Growth

Mar 07, 2007

In order to study the properties of LBCO superconductors, scientists need to produce large, single crystals of the material - a difficult task that wasn't possible until recently. At the state-of-the-art crystal ...

Chemists grow crystals with a twist -- and untwist

Jul 16, 2010

( -- Chemists from New York University and Russia's St. Petersburg State University have created crystals that can twist and untwist, pointing to a much more varied process of crystal growth than ...

First opal-like crystals discovered in meteorite

Aug 03, 2011

Scientists have found opal-like crystals in the Tagish Lake meteorite, which fell to Earth in Canada in 2000. This is the first extraterrestrial discovery of these unusual crystals, which may have formed in the primordial ...

Recommended for you

Pseudoparticles travel through photoactive material

Apr 23, 2015

Researchers of Karlsruhe Institute of Technology (KIT) have unveiled an important step in the conversion of light into storable energy: Together with scientists of the Fritz Haber Institute in Berlin and ...

From metal to insulator and back again

Apr 22, 2015

New work from Carnegie's Russell Hemley and Ivan Naumov hones in on the physics underlying the recently discovered fact that some metals stop being metallic under pressure. Their work is published in Physical Re ...

Electron spin brings order to high entropy alloys

Apr 22, 2015

Researchers from North Carolina State University have discovered that electron spin brings a previously unknown degree of order to the high entropy alloy nickel iron chromium cobalt (NiFeCrCo) - and may play ...

Expanding the reach of metallic glass

Apr 22, 2015

Metallic glass, a class of materials that offers both pliability and strength, is poised for a friendly takeover of the chemical landscape.

Electrons move like light in three-dimensional solid

Apr 22, 2015

Electrons were observed to travel in a solid at an unusually high velocity, which remained the same independent of the electron energy. This anomalous light-like behavior is found in special two-dimensional ...

Quantum model helps solve mysteries of water

Apr 20, 2015

Water is one of the most common and extensively studied substances on earth. It is vital for all known forms of life but its unique behaviour has yet to be explained in terms of the properties of individual ...

User comments : 4

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Sep 13, 2011
I imagine it's actually a silver and _lead_ mine not "a silver and lean mine"
not rated yet Sep 13, 2011
I imagine it's actually a silver and _lead_ mine not "a silver and lean mine"

Maybe a lean silver mine ;)
not rated yet Sep 13, 2011
If they are mining lean, maybe they should ship it to the US.
5 / 5 (1) Sep 13, 2011
I'll take a hundred pounds.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.