New thinking on regulation of sex chromosomes in fruit flies

September 19, 2011

Fruit flies have been indispensible to our understanding of genetics and biological processes in all animals, including humans. Yet, despite being one of the most studied of animals, scientists are still finding the fruit fly to be capable of surprises, as evidenced by new research at the University of Rochester.

The latest revelation has to do with the activity of the in male fruit flies. It was widely accepted that all X chromosomes in male fruit flies showed an increased level of activity. It was also believed that, in the absence of increased activity, the cell would die. But biologists at the University got some unexpected results when they studied chromosomal behavior in fruit flies.

The findings, by the lab of Associate Professor Daven Presgraves, have been published in the journal .

While chromosomes in most animals come in pairs, that is not the case with all sex chromosomes. Males, typically being the ones to determine the gender of , carry both the X and Y chromosomes, compared to the female, which carries two X chromosomes. Since the carry for traits that go beyond gender determination, a process—called dosage compensation—evolved to ensure that the X chromosomes in males and females are expressed at the same level.

Dosage compensation occurs differently from one species to the next. In male (Drosophila), the expression—or activity—of genes on most of the single X chromosomes is doubled to match the expression of the two X chromosomes in female cells. Scientists have believed that the process of dosage compensation occurs in all cells of the male fruit fly. But University biologists have discovered that is not the case with the germ (reproductive) cells in the testes.

A complex of proteins called the dosage compensation complex is responsible for upregulating gene expression in somatic (non-reproductive) cells. "That complex doesn't exist in germ cells, so it was assumed that dosage compensation occurred in those cells by some other mechanism," said lead author Colin Meiklejohn, "We showed there is no upregulation of X chromosomes in the testes of flies."

Scientists have assumed that dosage compensation is needed for any male cell to survive, said Meiklejohn. It's not clear why there are no negative effects in the male sex cells, but Meiklejohn said that's a question University researchers will look at next.

Explore further: X chromosome exposed

Related Stories

X chromosome exposed

May 29, 2008

Researchers from the European Molecular Biology Laboratory (EMBL) in Heidelberg, Germany, and the EMBL-European Bioinformatics Institute (EMBL-EBI) in Hinxton, UK, have revealed new insights into how sex chromosomes are regulated. ...

Sex and the single chromosome

November 26, 2010

Is there value to sex? For higher organisms, absolutely. Animals, plants and fungi that reproduce only by cloning are scarce as hen's teeth, suggesting the gene shuffling of sex pays handsome dividends.

The story of X -- evolution of a sex chromosome

April 16, 2009

( -- Move over, Y chromosome - it's time X got some attention. In the first evolutionary study of the chromosome associated with being female, University of California, Berkeley, biologist Doris Bachtrog and her ...

Recommended for you

How Frankenstein saved humankind from probable extinction

October 28, 2016

Frankenstein as we know him, the grotesque monster that was created through a weird science experiment, is actually a nameless Creature created by scientist Victor Frankenstein in Mary Shelley's 1818 novel, "Frankenstein." ...

Closer look reveals tubule structure of endoplasmic reticulum

October 28, 2016

(—A team of researchers from the U.S. and the U.K. has used high-resolution imaging techniques to get a closer look at the endoplasmic reticulum (ET), a cellular organelle, and in so doing, has found that its structure ...

Computer model is 'crystal ball' for E. coli bacteria

October 28, 2016

It's difficult to make predictions, especially about the future, and even more so when they involve the reactions of living cells—huge numbers of genes, proteins and enzymes, embedded in complex pathways and feedback loops. ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.