New thinking on regulation of sex chromosomes in fruit flies

Sep 19, 2011

Fruit flies have been indispensible to our understanding of genetics and biological processes in all animals, including humans. Yet, despite being one of the most studied of animals, scientists are still finding the fruit fly to be capable of surprises, as evidenced by new research at the University of Rochester.

The latest revelation has to do with the activity of the in male fruit flies. It was widely accepted that all X chromosomes in male fruit flies showed an increased level of activity. It was also believed that, in the absence of increased activity, the cell would die. But biologists at the University got some unexpected results when they studied chromosomal behavior in fruit flies.

The findings, by the lab of Associate Professor Daven Presgraves, have been published in the journal .

While chromosomes in most animals come in pairs, that is not the case with all sex chromosomes. Males, typically being the ones to determine the gender of , carry both the X and Y chromosomes, compared to the female, which carries two X chromosomes. Since the carry for traits that go beyond gender determination, a process—called dosage compensation—evolved to ensure that the X chromosomes in males and females are expressed at the same level.

Dosage compensation occurs differently from one species to the next. In male (Drosophila), the expression—or activity—of genes on most of the single X chromosomes is doubled to match the expression of the two X chromosomes in female cells. Scientists have believed that the process of dosage compensation occurs in all cells of the male fruit fly. But University biologists have discovered that is not the case with the germ (reproductive) cells in the testes.

A complex of proteins called the dosage compensation complex is responsible for upregulating gene expression in somatic (non-reproductive) cells. "That complex doesn't exist in germ cells, so it was assumed that dosage compensation occurred in those cells by some other mechanism," said lead author Colin Meiklejohn, "We showed there is no upregulation of X chromosomes in the testes of flies."

Scientists have assumed that dosage compensation is needed for any male cell to survive, said Meiklejohn. It's not clear why there are no negative effects in the male sex cells, but Meiklejohn said that's a question University researchers will look at next.

Explore further: Vermicompost leachate improves tomato seedling growth

Related Stories

X chromosome exposed

May 29, 2008

Researchers from the European Molecular Biology Laboratory (EMBL) in Heidelberg, Germany, and the EMBL-European Bioinformatics Institute (EMBL-EBI) in Hinxton, UK, have revealed new insights into how sex chromosomes are regulated. ...

Sex and the single chromosome

Nov 26, 2010

Is there value to sex? For higher organisms, absolutely. Animals, plants and fungi that reproduce only by cloning are scarce as hen's teeth, suggesting the gene shuffling of sex pays handsome dividends.

The story of X -- evolution of a sex chromosome

Apr 16, 2009

(PhysOrg.com) -- Move over, Y chromosome - it's time X got some attention. In the first evolutionary study of the chromosome associated with being female, University of California, Berkeley, biologist Doris ...

Recommended for you

Vermicompost leachate improves tomato seedling growth

Nov 21, 2014

Worldwide, drought conditions, extreme temperatures, and high soil saline content all have negative effects on tomato crops. These natural processes reduce soil nutrient content and lifespan, result in reduced plant growth ...

Plant immunity comes at a price

Nov 21, 2014

Plants are under permanent attack by a multitude of pathogens. To win the battle against fungi, bacteria, viruses and other pathogens, they have developed a complex and effective immune system. And just as ...

Evolution: The genetic connivances of digits and genitals

Nov 20, 2014

During the development of mammals, the growth and organization of digits are orchestrated by Hox genes, which are activated very early in precise regions of the embryo. These "architect genes" are themselves regulated by ...

Surrogate sushi: Japan biotech for bluefin tuna

Nov 20, 2014

Of all the overfished fish in the seas, luscious, fatty bluefin tuna are among the most threatened. Marine scientist Goro Yamazaki, who is known in this seaside community as "Young Mr. Fish," is working to ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.