Scientists observe how superconducting nanowires lose resistance-free state

Sep 22, 2011

Even with today's invisibility cloaks, people can't walk through walls. But, when paired together, millions of electrons can.

The perform this trick, called macroscopic quantum tunneling, when they pair up and move into a region of space that is normally off-limits under the laws of . The problem is that as millions of electrons collectively move through a superconducting nanowire, they use energy and give off heat.

The heat can build, transforming sections of the wire into a non-superconducting state. The process, called a phase slip, adds resistance to an electrical system and has implications for designing new nano-scale superconductors.

Now, scientists have observed individual phase slips in aluminum and characterized the nature and temperature at which they occur. This information could help scientists remove phase slips from nano-scale systems, which could lead to more reliable nanowires and more efficient nano-electronics, said Duke physicist Albert Chang.

The results appeared online Sept. 21 in .

The macroscopic quantum tunneling effect was first observed in a system called a Josephson junction. This device has a thin insulating layer connecting two , which are several nanometers wide and have a three-dimensional shape.

To study the tunneling and phase slips in a simpler system, however, Chang and his colleagues used individual, one-dimensional nanowires made of aluminum. The new observations are "arguably the first convincing demonstration of tunneling of millions of electrons in one-dimensional superconducting nanowires," said Chang, who led the study.

In the experiment, the wires ranged in length from 1.5 to 10 micrometers, with widths from five to 10 nanometers. Chang cooled the wires to a temperature close to , roughly 1 degree Kelvin or -458 degrees .

At this temperature, a metal's vibrates in a way that allows electrons to overcome their negative repulsion of one other. The electrons make pairs and electric current flows essentially resistance-free, forming a superconductor.

The electron pairs move together in a path in a quantum-mechanical space, which resembles the curled cord of an old phone. On their way around the path, all of the electrons have to scale a barrier or a wall. Moving past this wall collectively keeps the electrons paired and the superconducting current stable.

But, the collective effort takes energy and gives off heat. With successive scaling attempts, the heat builds, causing a section of the wire to experience a phase slip from a superconducting to a non-superconducting state.

To pinpoint precisely how phase slips happen, Chang varied the temperatures and amount of current run through the aluminum nanowires.

The experiments show that at higher temperatures, roughly 1.5 degrees Kelvin and close to the critical temperature where the wires naturally become non-superconducting, the electrons have enough energy to move over the wall that keeps the electrons paired and the superconducting current stable.

In contrast, the electrons in the nanowires cooled to less than 1 degree Kelvin do not have the energy to scale the wall. Instead, the electrons tunnel, or go through the wall together, all at once, said Duke physicist Gleb Finkelstein, one of Chang's collaborators.

The experiments also show that at the relatively higher temperatures, individual jumps over the wall don't create enough heat to cause a breakdown in superconductivity. But multiple jumps do.

At the lowest temperatures, however, the paired electrons only need to experience one successful attempt at the wall, either over or through it, to create enough heat to slip in phase and break the .

Studying the electrons' behavior at specific temperatures provides scientists with information to build ultra-thin superconducting wires that might not have phase slips. Chang said the improved wires could soon play a role in ultra-miniaturized electrical components for ultra-miniaturized electronics, such as the quantum bit, used in a quantum computer.

Explore further: Researchers demonstrate ultra low-field nuclear magnetic resonance using Earth's magnetic field

More information: Li, P. et al. Phys. Rev. Lett. 107, 137004 (2011) DOI:10.1103/PhysRevLett.107.137004

Related Stories

Tiny superconductors withstand stronger magnetic fields

Feb 04, 2005

Ultrathin superconducting wires can withstand stronger magnetic fields than larger wires made from the same material, researchers now report. This finding may be useful for technologies that employ superconducting ...

Scientists discover world's smallest superconductor

Mar 29, 2010

Scientists have discovered the world's smallest superconductor, a sheet of four pairs of molecules less than one nanometer wide. The Ohio University-led study, published Sunday as an advance online publication ...

Researcher discovers how to control semiconductor nanowires

Jun 13, 2006

Jorden van Dam, researcher at the Kavli Institute of Nanoscience Delft (Holland), has succeeded in largely controlling the transportation of electrons in semiconductor nanowires. Van Dam moreover discovered how to observe ...

Recommended for you

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

Isaacsname
not rated yet Sep 22, 2011
After doing some reading about electrostatics on wikipedia..

Are the walls they are talking about basically the hills and saddle points in a field ? And the heat is basically friction ?

http://www.nanowe...9617.php