Scientists get first detailed look at nitrogen doping in single-layer graphene

Sep 21, 2011 by Glennda Chui
A close-up, three-dimensional image of a single nitrogen atom in a sheet of graphene - a material made of carbon atoms arranged in a honeycomb pattern. The larger nitrogen atom sticks out above its carbon neighbors and contributes about half of its extra electron to the graphene lattice, changing its electronic properties. The image was made with a scanning tunneling microscope. Image courtesy of Science/AAAS

( -- The strength, flexibility, transparency and high electrical conductivity of single-layer graphene make it a potentially unique and valuable material for the next generation of electronic devices. Made of carbon atoms arranged in a honeycomb pattern – think of a chicken-wire fence – it is 97 percent transparent and 1,000 times stronger than steel.

Researchers are working on ways to tune the properties of graphene for specific electronic applications. One way to do that is by doping – introducing small amounts of other elements, such as nitrogen or phosphorus, that either add or subtract electrons from the system. Widely used in silicon technology, doping has been carried out experimentally in single-layer graphene sheets; but until now, the details of how the dopant atoms fit into the sheet and bond with their carbon neighbors remained elusive.

In a study reported Aug. 9 in Science, researchers from Columbia University, Sejong University in Korea and SLAC and Brookhaven national laboratories used a combination of four techniques to make the first detailed images of nitrogen-doped graphene film. They showed that individual had taken the places of in the two-dimensional sheet; that about half of the extra electron contributed by each nitrogen atom was distributed throughout the graphene lattice; and that this changed the electronic structure of the graphene sheet only within a short distance – about the width of two carbon atoms – from the dopant atoms. The ability to control the electronic structure at the atomic level has important implications for tuning the unique electronic properties of graphene for particular device applications.

“We’re not trying to work on existing systems and make them better. We’re looking for new directions that can potentially enable much higher efficiencies,” said paper co-author Theanne Schiros, a surface scientist at the Department of Energy’s Energy Frontier Research Center at Columbia, who is investigating graphene as a possible electrode for novel photovoltaic devices.

This image shows an area of graphene that's been doped with atoms of nitrogen. Tiny red spots show single atoms of nitrogen that have settled into the graphene lattice; since they're a bit larger than carbon atoms, they stick out slightly above it. Larger spots are clusters of nitrogen atoms. The image was made with a scanning tunneling microscope. Image coutesy Science/AAAS

“Now we see that doping is a strategy that can be applied to graphene cleanly and robustly,” she said, providing a potential way to create high-quality graphene films for use in electronic applications, including solar cells.

Schiros is no stranger to SLAC, having done her Ph.D. work here under Anders Nilsson. Her current work at Columbia focuses on using X-rays from synchrotron light sources to probe novel materials for use in renewable energy technologies.

For this study, she returned to SLAC to work with Dennis Nordlund, a staff scientist at SLAC’s Stanford Synchrotron Radiation Lightsource (SSRL), where recent upgrades allowed them to automatically scan many samples of the nitrogen-doped graphene films at once.

The research team grew the films by depositing chemical vapor on a thin sheet of copper foil.

They analyzed some samples of film while it was on the copper foil, and transferred others to silicon dioxide, the standard substrate for device measurements, for testing. Each sample was examined with Raman spectroscopy and scanning tunneling microscopy (STM) at Columbia, and with X-ray beams at SLAC’s SSRL, and Brookhaven’s National Synchrotron Light Source (NSLS).

The Raman spectra showed that the nitrogen dopant had changed the electronic properties of the graphene sheet without disturbing its basic structure. X-ray measurements at SSRL beamlines 10-1 and 13-2 and NSLS beamline U7A indicated that the nitrogen atoms lay within the plane of the graphene sheet and had each bonded with three carbon neighbors; in other words, each nitrogen atom had replaced a carbon in the sheet.

Finally, the STM images showed the nitrogen atoms as bright spots on the graphene surface. By counting those spots, the researchers determined that the concentration of nitrogen dopant per carbon atom varied from .23 to .35 percent. The images also revealed that the nitrogen atoms stuck out from the layer by about .6 Ångstrom, as they would if they had substituted for carbon in the lattice. These results were consistent with STM image simulations based on theory.

The lead author of the paper was Columbia physics graduate student Liuyan Zhao, working in the laboratory of Abhay N. Pasupathy, and the work was carried out in cooperation with the Energy Frontier Research Center at Columbia, which counts SLAC and Stanford among its collaborators.

Explore further: Tough foam from tiny sheets

More information:

Related Stories

Doping graphene

Jun 01, 2010

An organic molecule that has been found to be effective in making silicon-based electronics may be viable for building electronics on sheets of carbon only a single molecule thick. Researchers at the Max Planck ...

Researchers make graphene hybrid

Mar 01, 2010

Rice University researchers have found a way to stitch graphene and hexagonal boron nitride (h-BN) into a two-dimensional quilt that offers new paths of exploration for materials scientists.

Highlight: Nanopatterning of Graphene

Mar 11, 2010

Center for Nanoscale Materials (CNM) at Argonne National Laboratory users from Politecnico di Milano in Italy, working collaboratively with researchers in the Electronic & Magnetic Materials & Devices Group, ...

Recommended for you

Tough foam from tiny sheets

12 hours ago

Tough, ultralight foam of atom-thick sheets can be made to any size and shape through a chemical process invented at Rice University.

Graphene surfaces on photonic racetracks

Jul 28, 2014

In an article published in Optics Express, scientists from The University of Manchester describe how graphene can be wrapped around a silicon wire, or waveguide, and modify the transmission of light through it.

Simulating the invisible

Jul 28, 2014

Panagiotis Grammatikopoulos in the OIST Nanoparticles by Design Unit simulates the interactions of particles that are too small to see, and too complicated to visualize. In order to study the particles' behavior, he uses ...

Building 'invisible' materials with light

Jul 28, 2014

A new method of building materials using light, developed by researchers at the University of Cambridge, could one day enable technologies that are often considered the realm of science fiction, such as invisibility ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Sep 21, 2011
Is the E field of the donor electrons like a meniscus of sorts ?