Scientists air new views on how oxygenation affects aquatic life

Sep 16, 2011

Recent work at Plymouth University on how animals breathe underwater suggests that decreases in water quality and oxygenation will have an even greater impact on the diversity of aquatic life than was previously thought.

These are the exciting findings of Dr. Wilco Verberk and colleagues from Plymouth University who have made a significant breakthrough in understanding how in water affect the in the world’s oceans, lakes and rivers.

Dr Verberk and the team have developed a new index which accurately explains patterns in species richness and body size in both marine and freshwater ecosystems – and in doing so has reconciled previously conflicting approaches.

This video is not supported by your browser at this time.

Despite the fundamental importance of oxygen, up until now scientists haven’t agreed on what limits oxygen supply to cold-blooded animals breathing underwater: the effect of atmospheric pressure versus oxygen solubility related to temperature.

Dr Verberk explained: “Physiologists emphasize oxygen partial pressure, which is down to air pressure, and changes with altitude. Conversely, ecologists emphasize oxygen solubility, the amount dissolved in the water, traditionally expressing oxygen in terms of concentrations. Studies using one or other of these measures lead to very different conclusions on how oxygen drives patterns in species richness and body size such as those seen with latitude or along altitudinal gradients.

“Instead of one or the other being important, the amount of oxygen available to an aquatic animal is actually determined by both the amount dissolved in the water (its solubility) and the partial pressure, as well as the rate of diffusion.”

The research, published in Ecology, reveals that there is actually more oxygen available in warmer habitats, something which runs contrary to established wisdom. It turns out that as their habitat warms up, aquatic animals experience oxygen shortage not because less is available, but because their oxygen requirements increase faster than the rate of increase in oxygen availability - as metabolic rate increases, demand outstrips supply.

Dr Verberk said: “Our discovery that oxygen availability is actually higher in warmer habitats, represents a significant shift in our understanding of how shapes aquatic communities and has major implications for our theories of how and why are limited by temperature, as well as our ability to predict the impacts of climate change.

“Any decline in and in particular oxygenation, could greatly exacerbate climate change effects.”

Explore further: Campaigners say protected birds in danger in Malta

Provided by University of Plymouth

5 /5 (2 votes)
add to favorites email to friend print save as pdf

Related Stories

Aquatic life dying in Gulf mystery

Sep 01, 2005

Researchers are looking for answers as aquatic life dies in the "dead zone" moving through the southeastern Gulf of Mexico.

Seabed biodiversity in oxygen minimum zones

Mar 24, 2010

Some regions of the deep ocean floor support abundant populations of organisms, despite being overlain by water that contains very little oxygen, according to an international study led by scientists at the ...

Oxygen levels in the air do not limit plant productivity

Feb 17, 2011

There have been concerns that present oxygen levels may limit plant productivity. Swedish researchers at Umea University show that this is not the case in a new study published in the journal The Proceedings of the National Ac ...

Recommended for you

Invasive vines swallow up New York's natural areas

17 hours ago

(Phys.org) —When Antonio DiTommaso, a Cornell weed ecologist, first spotted pale swallow-wort in 2001, he was puzzled by it. Soon he noticed many Cornell old-field edges were overrun with the weedy vines. ...

Citizen scientists match research tool when counting sharks

Apr 23, 2014

Shark data collected by citizen scientists may be as reliable as data collected using automated tools, according to results published April 23, 2014, in the open access journal PLOS ONE by Gabriel Vianna from The University of Wes ...

Researchers detail newly discovered deer migration

Apr 23, 2014

A team of researchers including University of Wyoming scientists has documented the longest migration of mule deer ever recorded, the latest development in an initiative to understand and conserve ungulate ...

How Australia got the hump with one million feral camels

Apr 23, 2014

A new study by a University of Exeter researcher has shed light on how an estimated one million-strong population of wild camels thriving in Australia's remote outback have become reviled as pests and culled ...

User comments : 0

More news stories

Genetic code of the deadly tsetse fly unraveled

Mining the genome of the disease-transmitting tsetse fly, researchers have revealed the genetic adaptions that allow it to have such unique biology and transmit disease to both humans and animals.

Ocean microbes display remarkable genetic diversity

The smallest, most abundant marine microbe, Prochlorococcus, is a photosynthetic bacteria species essential to the marine ecosystem. An estimated billion billion billion of the single-cell creatures live i ...

Cell resiliency surprises scientists

New research shows that cells are more resilient in taking care of their DNA than scientists originally thought. Even when missing critical components, cells can adapt and make copies of their DNA in an alternative ...