Scientists offer way to address 'age-old' questions

Sep 07, 2011

Scientists have devised a method to measure the impact of age on the growth rates of cellular populations, a development that offers new ways to understand and model the growth of bacteria, and could provide new insights into how genetic factors affect their life cycle. The research, which appears in Evolution: International Journal of Organic Evolution, was conducted by scientists at New York University and the University of Tokyo.

When age, their capacity for reproduction is reduced. Individual within populations are subject to the force of selection, which results from differences in growth rates. Broadly speaking, growing populations are dominated by relatively young cells. A population's , however, depends sensitively on the interplay between selection and the reproductive capacities of the cells.

The researchers sought to understand how changes in cells' reproductive capacity would affect the population's growth rate. This question dates back to seminal research in by Ronald Fisher in the 1930s and William Hamilton in the 1960s. Typically, the answer is indirect, and relies on a measured life table and reproductive capacity, which takes into account survival and .

The NYU and University of Tokyo researchers hypothesized that a more direct gauge would be to examine the bacteria's —their history over several generations. In other words, they proposed looking backward several generations into the population's tree of cell divisions. This allowed them to directly measure the response of the bacteria's growth rate to age-specific changes in mortality and reproductive capacity.

"The force of selection within populations leaves key signatures in the population's lineage tree," said Edo Kussell, a professor of biology at NYU's Center for Genomics and Systems Biology and the study's corresponding author. "Theory allows us to interpret these in powerful ways. For instance, we found that how frequently a given age is observed along lineages is a direct reporter of how important that age is to the population's growth rate. This would allow us to predict the success or failure of mutant bacteria, which age differently from normal ones."

Using experimental data from laboratory populations of E. coli, the researchers confirmed several theoretical predictions. The article's other co-authors were Yuichi Wakamoto of the University of Tokyo and the Japan Science and Technology Agency and Alexander Grosberg, a professor in NYU's Department of Physics and its Center for Soft Matter Research.

The work builds upon a previously published paper in the Proceedings of the National Academy of Sciences, in which Kussell and co-author Stanislas Leibler of Rockefeller University offered a way to infer the behavior of individual cells from population-level measurements.

One of the behaviors they considered is known as stochastic switching, a strategy in which cells randomly activate certain genes in order to survive. Notably, pathogenic bacteria, which cause disease in both humans and animals, engage in stochastic switching, resulting in alternative cellular states that improve the bacteria's ability to survive. The cells best suited for given conditions survive while others die off—another example of selection within populations. Understanding what prompts this type of cellular change in bacteria, and which strains are more sustainable than others, could then lead to alternative methods to curb bacterial growth.

The study centered on understanding two types of cellular strategies—responsive switching, in which cells change their state by reacting to environmental change, and stochastic switching, in which cells randomly activate certain genes, independent of external forces. Within a , however, it is difficult to detect which strategy is being used—when cells change behavior, are they responding to their environment or is the change random?

Kussell and Leibler sought to develop a method that could disentangle these strategies. They showed that individual histories of cells—their lineages—would reveal differences between stochastic and responsive switching.

"Since stochastic switching organisms rely on selection to survive, we expected that if we could measure the strength of selection, we could distinguish the two strategies," Kussell said. "Once again, selection leaves a key signature in the population's lineage tree. In this case, the signature is the variance in cell divisions between lineages. If we measure that, then we can tell which strategy the cells are using internally."

The researchers simulated bacteria growing under fluctuating environmental conditions, and applied their lineage-based tests. This allowed them to show that the lineage tree indeed contains sufficient information to distinguish the two cellular strategies.

The importance of stochastic switching has recently been demonstrated in populations of cancer cells. With improved lineage tracking tools for cancer cells, it may soon become possible to apply some of the ideas that Kussell and co-workers have been developing in the bacterial context, also in other systems, such as tumor and stem cell populations.

Explore further: Rock-paper-scissors model helps researchers demonstrate benefits of high mutation rates

add to favorites email to friend print save as pdf

Related Stories

Genetic differences influence aging rates in the wild

Dec 12, 2007

Long-lived, wild animals harbor genetic differences that influence how quickly they begin to show their age, according to the results of a long-term study reported online on December 13th in Current Biology, a Cell Press ...

Cancer found to be a moving target

Jun 10, 2009

Cancer is the result of Darwinian evolution among populations of cells, in which the fittest cells win the struggle for survival, while ultimately killing the person of whom they are a part.

Biofilms: Even stickier than suspected

Mar 12, 2009

(PhysOrg.com) -- Biofilms are everywhere - in dental plaque and ear canals, on contact lenses and in water pipelines - and the bacteria that make them get more resilient with age, finds a new study in FEMS Mi ...

Cancer stem cells made, not born

Aug 18, 2011

In cancer, tumors aren't uniform: they are more like complex societies, each with a unique balance of cancer cell types playing different roles. Understanding this "social structure" of tumors is critical for treatment decisions ...

Flip-Flopping Gene Expression Can Be Advantageous

Nov 21, 2007

One gene for pea pod color generates green pods while a variant of that gene gives rise to the yellow-pod phenotype, a feature that helped Gregor Mendel, the 19th century Austrian priest and scientist, first ...

Recommended for you

Plants with dormant seeds give rise to more species

Apr 18, 2014

Seeds that sprout as soon as they're planted may be good news for a garden. But wild plants need to be more careful. In the wild, a plant whose seeds sprouted at the first warm spell or rainy day would risk disaster. More ...

Researchers successfully clone adult human stem cells

Apr 18, 2014

(Phys.org) —An international team of researchers, led by Robert Lanza, of Advanced Cell Technology, has announced that they have performed the first successful cloning of adult human skin cells into stem ...

User comments : 0

More news stories

Biologists help solve fungi mysteries

(Phys.org) —A new genetic analysis revealing the previously unknown biodiversity and distribution of thousands of fungi in North America might also reveal a previously underappreciated contributor to climate ...

Poll: Big Bang a big question for most Americans

Few Americans question that smoking causes cancer. But they have more skepticism than confidence in global warming, the age of the Earth and evolution and have the most trouble believing a Big Bang created the universe 13.8 ...

Making graphene in your kitchen

Graphene has been touted as a wonder material—the world's thinnest substance, but super-strong. Now scientists say it is so easy to make you could produce some in your kitchen.