Queen bee or worker bee? New insights into famous honeybee society caste system

Sep 21, 2011
Queen bee or worker bee? New insights into famous honeybee society caste system

Scientists are reporting deep new insights into whys and hows of the famous caste system that dominates honey bee societies, with a select few bee larvae destined for royalty and the masses for worker status. Their study probing the innermost biological makings of queen bees and worker bees appears in ACS's Journal of Proteome Research.

Jianke Li and colleagues (The joint work of scientists from China and Ethiopia) note that despite more than a century of research, mysteries remain about the biochemical factors at the basis of the fascinating caste system in . Schoolchildren learn that the (usually) one in a colony develops from larvae fed royal jelly, a protein-rich secretion from glands on the heads of worker bees. Other larvae develop into female workers or male drones. Although queen and share almost identical genes, their destinies could be more different.

"The female queen is large in size and specializes in reproduction," the scientists explain, "whereas workers are small and engage in colony-maintaining activities. Their life spans also vary, with the queen living for 1 to 2 years and the workers living only 6 to 7 weeks. To gain further information, the scientists looked at proteins inside the cells of larvae destined for queen and worker status.

Their findings reveal major differences, during early stages of life, in the activity of proteins in the mitochondria, structures that produce energy for cells. The differences include changes in the amounts of protein produced in cells and the activity of those proteins. In pre-queen larvae, proteins involved in carbohydrate and , for instance, are much more active than in workers. "This suggests proteins with metabolic enhancing activities generally appear to have significant roles in the process of caste determination," the researchers conclude.

Explore further: Orchid named after UC Riverside researcher

More information: Mitochondrial Proteins Differential Expression during Honeybee (Apis mellifera L.) Queen and Worker Larvae Caste Determination, J. Proteome Res., 2011, 10 (9), pp 4263–4280. DOI: 10.1021/pr200473a

Abstract
Despite their similar genetic makeup, honeybee (A. mellifera) queens and workers show alternative morphologies driven by nutritional difference during the larval stage. Although much research have been done to investigate the causes of honeybee caste polymorphism, information at subcellular protein levels is limited. We analyzed queen- and worker-destined larvae mitochondrial proteome at three early developmental stages using combinations of differential centrifugation, two-dimensional electrophoresis, mass spectrometry, bioinformatics, and quantitative real time PCR. In total, 67, 69, and 97 protein spots were reproducibly identified as mitochondrial proteins at 72, 96, and 120 h, respectively. There were significant qualitative and quantitative protein expression differences between the two castes at three developmental stages. In general, the queen-destined larvae up-regulated large proportions of proteins at all of the developmental stages and, in particular, 95% at 72 h. An overwhelming majority of the queen larvae up-regulated proteins were physiometabolic-enriched proteins (metabolism of carbohydrate and energy, amino acid, and fatty acid) and involved in protein folding, and this was further verified by functional enrichment and biological interaction network analyses as a direct link with metabolic rates and cellular responses to hormones. Although wide-ranging mitochondrial proteomes participate to shape the metabolic, physiologic, and anatomic differences between the two castes at 72 h, physiometabolic-enriched proteins were found as the major modulators of the profound marking of this caste differentiation. Owing to nutritional difference, prospective queen larvae showed enhanced growth, and this was manifested through the overexpression of metabolic enzymes. Differently from similar studies targeting the causes of honeybee caste polymorphism, this subcellular level study provides an in-depth insight into mitochondrial proteins-mediated caste polymorphism and greatly improves protein coverage involved during honeybee caste determination. Hence, it is a major step forward in the analysis of the fundamental causes of honeybee caste pathway decision and greatly contributes to the knowledge of honeybee biology. In particular, the consistency between the 22 proteins and mRNA expressions provides us important target genes for the reverse genetic analysis of caste pathway modulation through RNA interference.

add to favorites email to friend print save as pdf

Related Stories

Insulin signaling key to caste development in bees

Jul 14, 2010

What makes a bee grow up to be a queen? Scientists have long pondered this mystery. Now, researchers in the School of Life Sciences at Arizona State University have fit a new piece into the puzzle of bee development. ...

Honey bees: Genetic labeling decides about blue blood

Nov 03, 2010

Queen bees and worker bees share the same genome, but they are different in the chemical labeling of about 550 genes. This has been discovered by scientists of the German Cancer Research Center jointly with ...

Royal jelly makes bee queens, boosts nurture case

Mar 14, 2008

New Australian National University research may explain why eating royal jelly destines honeybee larvae to become queens instead of workers – and in the process adds new weight to the role of environmental factors in the ...

Wood ant queen has no egg-laying monopoly

Jun 28, 2007

The reproductive monopoly of the ant queen is not as strong as is often thought. Dr. Heikki Helanterä and Prof. Lotta Sundström, biologists working at the University of Helsinki, Finland, investigated worker ovary development ...

Recommended for you

Male monkey filmed caring for dying mate (w/ Video)

4 hours ago

(Phys.org) —The incident was captured by Dr Bruna Bezerra and colleagues in the Atlantic Forest in the Northeast of Brazil.  Dr Bezerra is a Research Associate at the University of Bristol and a Professor ...

Orchid named after UC Riverside researcher

21 hours ago

One day about eight years ago, Katia Silvera, a postdoctoral scholar at the University of California, Riverside, and her father were on a field trip in a mountainous area in central Panama when they stumbled ...

In sex-reversed cave insects, females have the penises

23 hours ago

Researchers reporting in the Cell Press journal Current Biology on April 17 have discovered little-known cave insects with rather novel sex lives. The Brazilian insects, which represent four distinct but re ...

Fear of the cuckoo mafia

23 hours ago

If a restaurant owner fails to pay the protection money demanded of him, he can expect his premises to be trashed. Warnings like these are seldom required, however, as fear of the consequences is enough to ...

User comments : 0

More news stories

Researchers develop new model of cellular movement

(Phys.org) —Cell movement plays an important role in a host of biological functions from embryonic development to repairing wounded tissue. It also enables cancer cells to break free from their sites of ...

Scientists tether lionfish to Cayman reefs

Research done by U.S. scientists in the Cayman Islands suggests that native predators can be trained to gobble up invasive lionfish that colonize regional reefs and voraciously prey on juvenile marine creatures.

Under some LED bulbs whites aren't 'whiter than white'

For years, companies have been adding whiteners to laundry detergent, paints, plastics, paper and fabrics to make whites look "whiter than white," but now, with a switch away from incandescent and fluorescent lighting, different ...