Playing ping-pong with single electrons: Research provides important technique for transferring quantum information

Sep 21, 2011
Illustration of the potential-energy landscape seen by an electron, and the potential wave produced by a sound pulse (surface acoustic wave, SAW) coming from bottom right and moving past the first dot, along the channel towards the other dot.

Scientists at Cambridge University have shown an amazing degree of control over the most fundamental aspect of an electronic circuit, how electrons move from one place to another.

Researchers from the University's Cavendish Laboratory have moved an individual electron along a wire, batting it back and forth over sixty times, rather like the ball in a game of ping-pong. The research findings, published today (22 September) in the journal Nature, may have applications in , transferring a quantum 'bit' between processor and memory, for example.

This video is not supported by your browser at this time.
An animated illustration in cross section of a sound wave capturing an electron from a well (dot) and transferring it to a second dot.

Imagine you are at a party and you want to get to the other side of a crowded room to talk to someone. As you walk you have to weave around people who are walking, dancing or just standing in the way. You may also have to stop and greet friends along the way and by the time you reach the person you wanted to talk to you have forgotten what you were going to say. Wouldn't it be nice to be lifted up above the crowd, and pushed directly to your destination?

In a similar way, electrons carrying a current along a wire do not go directly from one end to the other but instead follow a complicated zigzag path. This is a problem if the electron is carrying information, as it tends to 'forget' it, or, more scientifically, the loses .

In this work, a single electron can be trapped in a small well (called a quantum dot), just inside the surface of a piece of (GaAs). A channel leads to another, empty, dot 4 microns (millionths of a metre) away. The channel is higher in energy than the surrounding electrons. A very short burst of sound (just a few billionths of a second long) is then sent along the surface, past the dot. The accompanying wave of electrical potential picks up the electron, which then surfs along the channel to the other dot, where it is captured. A burst of sound sent from the other direction returns the electron to the starting dot where the process can be repeated. The electron goes back and forth like a ping-pong ball. Rallies of up to 60 shots have been achieved before anything goes wrong.

"The movement of electrons by our 'surface acoustic wave' can also be likened to peristalsis in the oesophagus, where food is propelled from the mouth to the stomach by a wave of muscle contraction," explains Rob McNeil, the PhD student who did most of the work, helped by postdoc Masaya Kataoka, both at the University of Cambridge's Department of Physics, the Cavendish Laboratory.

"This is an enabling technology for quantum computers," Chris Ford, team leader of the research from the Semiconductor Physics Group in the Cavendish, says. "There is a lot of work going on worldwide to make this new type of computer, which may solve certain complex problems much faster than classical computers. However, little effort has yet been put into connecting up different components, such as processor and memory. Although our experiments do not yet show that 'remember' their quantum state, this is likely to be the case. This would make the method of transfer a candidate for moving quantum bits of information (qubits) around a quantum circuit, in a quantum computer. Indeed, our theorist, Crispin Barnes, proposed using this mechanism to make a whole quantum computer a long time ago, and this is an important step towards that goal."

Explore further: Serious security: Device-Independent Quantum Key Distribution guards against the most general attacks

More information: Nature, September 22nd 2011; doi:10.1038/nature10444

Related Stories

Single quantum dot nanowire photodetectors

Dec 14, 2010

Moving a step closer toward quantum computing, a research team in the Netherlands recently fabricated a photodetector based on a single nanowire, in which the active element is a single quantum dot with a ...

Recommended for you

Backpack physics: Smaller hikers carry heavier loads

17 hours ago

Hikers are generally advised that the weight of the packs they carry should correspond to their own size, with smaller individuals carrying lighter loads. Although petite backpackers might appreciate the ...

Extremely high-resolution magnetic resonance imaging

17 hours ago

For the first time, researchers have succeeded to detect a single hydrogen atom using magnetic resonance imaging, which signifies a huge increase in the technology's spatial resolution. In the future, single-atom ...

'Attosecond' science breakthrough

18 hours ago

Scientists from Queen's University Belfast have been involved in a groundbreaking discovery in the area of experimental physics that has implications for understanding how radiotherapy kills cancer cells, among other things.

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

Isaacsname
not rated yet Sep 21, 2011
Surfing electrons. I wonder if they can set up short-burst standing waves in the channel.
Callippo
5 / 5 (2) Sep 21, 2011
The transport and detection of single electrons with extraordinary precision has been a long sought goal since its potential impact on metrology was recognized in the 80s. For example, the one-by-one electron transfer with a well defined frequency may ultimately lead to the realisation of a quantum standard for the electrical current unit ampere like the ones already implemented for voltage and resistance based on the Josephson and Quantum Hall effect, respectively. One possible approach to this goal is just the mechanical transfer of single electrons.

http://www.nano.p...l_koenig