Addressing the challenge of persister cells in bacterial infections

Sep 15, 2011 By Ariel DuChene

Dacheng Ren, assistant professor in the Department of Biomedical and Chemical Engineering in Syracuse University’s L.C. Smith College of Engineering and Computer Science (LCS) and member of the Syracuse Biomaterials Institute, has published a paper based on his research into how antimicrobial peptides may be able to aid in addressing the challenge posed by bacterial persister cells. His work was published in the July issue of Applied and Environmental Microbiology.

Persister cells, similar to spores, are a small portion of a microbial population that is dormant. Inherent in bacterial populations, it is believed that they play important roles in chronic infections like tuberculosis, persistent fungal infections and lung infections in cystic fibrosis patients. The dormant properties of these persister cells make them tolerant to almost all antibiotics. Therefore, infections can reoccur once a person stops antibiotic treatment since the bacteria can regrow from the persister cells and attack again.

Currently, there are no clinically proven treatments for killing persister cells. Working with New York University chemistry professor Neville R. Kallenbach, Ren began looking at anti-microbial peptides (AMP) as a potential solution to targeting these cells. AMPs target cells regardless of whether they are dormant, and Ren was able to demonstrate that some AMPs are very effective at attacking persister cells, both the free-swimming ones and those attached to surfaces (in biofilms).

The team also found a synergy between the use of antibiotics and AMPs to effectively eliminate dormant persister cells. Ren found that the use of AMPs reduced persister ’ tolerance to antibiotic treatment. “We are inspired by these results and encouraged about potential new approaches to control persistent infections,” says Ren.

Explore further: Brand new technology detects probiotic organisms in food

Provided by Syracuse University

not rated yet
add to favorites email to friend print save as pdf

Related Stories

Antibiotic resistance is not just genetic

Jan 05, 2011

Genetic resistance to antibiotics is not the only trick bacteria use to resist eradication– they also have a second defence strategy known as persistence that can kick in.

New compounds may control deadly fungal infections

Dec 22, 2009

An estimated 25,000 Americans develop severe fungal infections each year, leading to 10,000 deaths despite the use of anti-fungal drugs. The associated cost to the U.S. health care system has been estimated at $1 billion ...

Recommended for you

Fighting bacteria—with viruses

12 hours ago

Research published today in PLOS Pathogens reveals how viruses called bacteriophages destroy the bacterium Clostridium difficile (C. diff), which is becoming a serious problem in hospitals and healthcare institutes, due to its re ...

Atomic structure of key muscle component revealed

12 hours ago

Actin is the most abundant protein in the body, and when you look more closely at its fundamental role in life, it's easy to see why. It is the basis of most movement in the body, and all cells and components ...

Brand new technology detects probiotic organisms in food

Jul 23, 2014

In the food industr, ity is very important to ensure the quality and safety of products consumed by the population to improve their properties and reduce foodborne illness. Therefore, a team of Mexican researchers ...

Protein evolution follows a modular principle

Jul 23, 2014

Proteins impart shape and stability to cells, drive metabolic processes and transmit signals. To perform these manifold tasks, they fold into complex three-dimensional shapes. Scientists at the Max Planck ...

Report on viruses looks beyond disease

Jul 22, 2014

In contrast to their negative reputation as disease causing agents, some viruses can perform crucial biological and evolutionary functions that help to shape the world we live in today, according to a new report by the American ...

User comments : 0