'Oscar Madison' approach to solar cells may outshine 'Felix Unger' design

September 12, 2011

Sometimes neatness may not be necessary. Researchers have demonstrated that a tangled coating of randomly positioned nanowires can increase solar cell efficiency by absorbing more light.

In the race to enhance the efficiency of solar cells, spending the time and effort to get tiny nanowires to line up neatly on the top of ordinary may not be worth the effort.

An international team of researchers has for the first time demonstrated that random, haphazardly grown silicon nanowires can significantly boost the power-producing capabilities of by trapping a broad spectrum of and capturing sunlight streaming in from a wide variety of angles.

The nanowires, which are wrapped in a shell of , serve as an antireflective coating on top of the usually shiny silicon wafer. The scraggly tangle captures light ranging in color from red to violet, and the random orientation of the wires means the coating would continue to absorb light even as the angle of the Sun changes throughout the day. The researchers fabricated the jumbled, yet effective, antireflective coating by vaporizing silicon powder and then depositing it on top of a silicon wafer.

The process, described in the AIP's new journal AIP Advances, is relatively inexpensive and could be scaled up for large manufacturing operations. For future work the team plans to create structures that are more ordered to test if the messy arrangement really is better.

Explore further: Solar breakthrough could lead to cheaper power

More information: “Graded index and randomly oriented core-shell silicon nanowires for broadband and wide angle antireflection” by P. Pignalosa et al. is published in AIP Advances.

Related Stories

Trapping Sunlight with Silicon Nanowires

March 3, 2010

(PhysOrg.com) -- Berkeley Lab researchers have found a better way to trap light in photovoltaic cells through the use of vertical arrays of silicon nanowires. This could substantially cut the costs of solar electric power ...

Nanostructures improve solar cell efficiency

May 26, 2011

To make solar cells a competitive alternative to other renewable energy sources, researchers are investigating different alternatives. A step in the right direction is through new processes that change the surfaces of silicon ...

Recommended for you

Meet the high-performance single-molecule diode

July 29, 2015

A team of researchers from Berkeley Lab and Columbia University has passed a major milestone in molecular electronics with the creation of the world's highest-performance single-molecule diode. Working at Berkeley Lab's Molecular ...

Reshaping the solar spectrum to turn light to electricity

July 28, 2015

When it comes to installing solar cells, labor cost and the cost of the land to house them constitute the bulk of the expense. The solar cells—made often of silicon or cadmium telluride—rarely cost more than 20 percent ...

Could stronger, tougher paper replace metal?

July 24, 2015

Researchers at the University of Maryland recently discovered that paper made of cellulose fibers is tougher and stronger the smaller the fibers get. For a long time, engineers have sought a material that is both strong (resistant ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.