Orchestrator of waste removal rescues cells that can't manage their trash

Sep 01, 2011

Just as we must take out the trash to keep our homes clean and safe, it is essential that our cells have mechanisms for dealing with wastes and worn-out proteins. When these processes are not working properly, unwanted debris builds up in the cell and creates a toxic environment. Now, a new study published by Cell Press on September 1st in the journal Developmental Cell describes a master regulator of the intracellular recycling and waste removal process and suggests an alternative strategy for treatment of metabolic disorders associated with the abnormal accumulation of waste in the cell.

Lysosomes are the that are primarily involved in the degradation and recycling of waste. Lysosomes ingest trash and degrade it with powerful enzymes. Failure of this process causes lysosomal storage diseases (LSDs), which are characterized by the progressive accumulation of waste and are often associated with neurodegeneration. Lysosomes are also involved in "lysosomal ", where they are recruited to the inner surface of the cell and then fuse with the cell membrane to dump their contents outside the cell.

"While the main steps of lysosomal exocytosis had been elucidated, little was known about its regulation," says senior study author Dr. Andrea Ballabio. In the current study, scientists from the Telethon Institute of Genetics and Medicine in Italy, also affiliated with the Jan and Dan Duncan Institute and Baylor College of Medicine in Houston Texas, found a way to exploit this mechanism to get rid of toxic cellular waste. The researchers built on their earlier discovery that production of lysosomes and the ability of lysosomes to degrade wastes are regulated by transcription factor EB (TFEB) and that activation of TFEB reduces accumulation of pathogenic protein in a cellular model of Huntington's disease. Here, they examined whether TFEB also regulates lysosomal exocytosis.

TFEB modulated lysosomal exocytosis by increasing the pool of lysosomes recruited to the cell membrane and by promoting their fusion with the membrane. Importantly, induction of lysosomal exocytosis by increased TFEB activity rescued pathogenic storage and rescued cells in multiple models of LSDs. "Our findings demonstrate that lysosomal exocytosis is regulated by TFEB," concludes Dr. Ballabio. "Although these strategies will have to be tested by long-term studies in animal models to verify their therapeutic potential, our data indicate that lysosomal exocytosis can be exploited to promote cellular clearance in lysosomal storage diseases, suggesting an alternative strategy to treat LSDs and common neurodegenerative disorders."

Explore further: Compound from soil microbe inhibits biofilm formation

Related Stories

Viewing dye-packed vesicles causes them to explode

Sep 25, 2007

It’s a long-standing question: Can just the act of observing an experiment affect the results? According to a new study by Rockefeller University scientists, if the experiment uses a fluorescent dye called acridine orange, ...

Recommended for you

Compound from soil microbe inhibits biofilm formation

17 hours ago

Researchers have shown that a known antibiotic and antifungal compound produced by a soil microbe can inhibit another species of microbe from forming biofilms—microbial mats that frequently are medically harmful—without ...

Researcher among best in protein modeling contests

20 hours ago

A Purdue University researcher ranks among the best in the world in bioinformatics competitions to predict protein structure, docking and function, making him a triple threat in the world of protein modeling.

Survey of salmonella species in Staten Island Zoo's snakes

21 hours ago

For humans, Salmonella is always bad news. The bacterial pathogen causes paratyphoid fever, gastroenteritis and typhoid. But for snakes, the bacteria aren't always bad news. Certain species of Salmonella are a natural part ...

A long-standing mystery in membrane traffic solved

Mar 27, 2015

In 2013, James E. Rothman, Randy W. Schekman, and Thomas C. Südhof won the Nobel Prize in Physiology or Medicine for their discoveries of molecular machineries for vesicle trafficking, a major transport ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.