Researchers create nanoscale gold coating with largest-ever superlattice (w/ video)

Sep 16, 2011

(PhysOrg.com) -- Researchers at Rensselaer Polytechnic Institute developed a new method for creating a layer of gold nanoparticles that measures only billionths of a meter thick. These self-assembling gold coatings with features measuring less than 10 nanometers could hold important implications for nanoelectronics manufacturing.

In addition, Sang-Kee Eah, assistant professor in the Department of Physics, Applied Physics, and Astronomy at Rensselaer, demonstrated how the gold nanoparticles assemble into a unique uniform pattern called a superlattice. Eah observed a superlattice measuring 20 microns, with a distance between lines of nanoparticles — or lattice constant — of 8.8 . He said the 20-micron superlattice domain is the largest ever documented, and this new technique could lead to even larger superlattices with even tinier features.

“Thinking about semiconductors, this discovery could offer new solutions for scaling down the features of today’s most advanced 32-nanometer computer chips to have features in the range of less than 20 nanometers, or even less than 10 nanometers,” Eah said. He used scanning electron microscopy, with Moire interference patterns, to measure the boundaries of the superlattice.

Results of the study, titled “A very large two-dimensional superlattice domain of monodisperse gold nanoparticles by self-assembly,” were recently published in the Journal of Materials Chemistry.

Watch a demonstration video and see the entire image of the large superlattice:

This video is not supported by your browser at this time.

To create the nanolayer, Eah infused liquid toluene — a common industrial solvent — with gold nanoparticles. The nanoparticles form a flat, closely packed monolayer of on the surface of the liquid where it meets air. By moving the nanolayer of to another air-water surface, the large superlattice was formed and coated onto a silicon wafer after the toluene and water evaporated.

Explore further: Demystifying nanocrystal solar cells

More information: The paper may be viewed online at: dx.doi.org/10.1039/C1JM11671A

Related Stories

Hot off the press: Nanoscale Gutenberg-style printing

Apr 15, 2011

(PhysOrg.com) -- When Gutenberg developed the principles of modern book printing, books became available to the masses. Hoping to bring technology capable of mass production to the nanometer scale, Udo Bach ...

Metal sheets with DNA framework may enable nanocircuits

May 20, 2009

(PhysOrg.com) -- Using DNA not as a genetic material but as a structural support, Cornell researchers have created thin sheets of gold nanoparticles held together by strands of DNA. The work could prove useful ...

Microfabrication: The light approach

Mar 04, 2011

Materials that conduct electricity but which are also transparent to light are important for electronic displays, cameras and solar cells. The industry’s standard material for these applications is indium ...

Gold nanoparticles enrich every day products

May 05, 2010

(PhysOrg.com) -- Durable paint, water purification, faster computers, tougher shoe soles, and lighter and cheaper televisions are all possibilities now that a Queensland University of Technology (QUT) scientist has discovered ...

Recommended for you

Demystifying nanocrystal solar cells

2 hours ago

ETH researchers have developed a comprehensive model to explain how electrons flow inside new types of solar cells made of tiny crystals. The model allows for a better understanding of such cells and may ...

Researchers use oxides to flip graphene conductivity

Jan 26, 2015

Graphene, a one-atom thick lattice of carbon atoms, is often touted as a revolutionary material that will take the place of silicon at the heart of electronics. The unmatched speed at which it can move electrons, ...

Researchers make magnetic graphene

Jan 26, 2015

Graphene, a one-atom thick sheet of carbon atoms arranged in a hexagonal lattice, has many desirable properties. Magnetism alas is not one of them. Magnetism can be induced in graphene by doping it with magnetic ...

The latest fashion: Graphene edges can be tailor-made

Jan 23, 2015

Theoretical physicists at Rice University are living on the edge as they study the astounding properties of graphene. In a new study, they figure out how researchers can fracture graphene nanoribbons to get ...

Nanotechnology changes behavior of materials

Jan 23, 2015

One of the reasons solar cells are not used more widely is cost—the materials used to make them most efficient are expensive. Engineers are exploring ways to print solar cells from inks, but the devices ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.