Researchers create nanoscale gold coating with largest-ever superlattice (w/ video)

Sep 16, 2011

(PhysOrg.com) -- Researchers at Rensselaer Polytechnic Institute developed a new method for creating a layer of gold nanoparticles that measures only billionths of a meter thick. These self-assembling gold coatings with features measuring less than 10 nanometers could hold important implications for nanoelectronics manufacturing.

In addition, Sang-Kee Eah, assistant professor in the Department of Physics, Applied Physics, and Astronomy at Rensselaer, demonstrated how the gold nanoparticles assemble into a unique uniform pattern called a superlattice. Eah observed a superlattice measuring 20 microns, with a distance between lines of nanoparticles — or lattice constant — of 8.8 . He said the 20-micron superlattice domain is the largest ever documented, and this new technique could lead to even larger superlattices with even tinier features.

“Thinking about semiconductors, this discovery could offer new solutions for scaling down the features of today’s most advanced 32-nanometer computer chips to have features in the range of less than 20 nanometers, or even less than 10 nanometers,” Eah said. He used scanning electron microscopy, with Moire interference patterns, to measure the boundaries of the superlattice.

Results of the study, titled “A very large two-dimensional superlattice domain of monodisperse gold nanoparticles by self-assembly,” were recently published in the Journal of Materials Chemistry.

Watch a demonstration video and see the entire image of the large superlattice:

This video is not supported by your browser at this time.

To create the nanolayer, Eah infused liquid toluene — a common industrial solvent — with gold nanoparticles. The nanoparticles form a flat, closely packed monolayer of on the surface of the liquid where it meets air. By moving the nanolayer of to another air-water surface, the large superlattice was formed and coated onto a silicon wafer after the toluene and water evaporated.

Explore further: New type of barcode could make counterfeiters' lives more difficult

More information: The paper may be viewed online at: dx.doi.org/10.1039/C1JM11671A

Related Stories

Hot off the press: Nanoscale Gutenberg-style printing

Apr 15, 2011

(PhysOrg.com) -- When Gutenberg developed the principles of modern book printing, books became available to the masses. Hoping to bring technology capable of mass production to the nanometer scale, Udo Bach ...

Metal sheets with DNA framework may enable nanocircuits

May 20, 2009

(PhysOrg.com) -- Using DNA not as a genetic material but as a structural support, Cornell researchers have created thin sheets of gold nanoparticles held together by strands of DNA. The work could prove useful ...

Microfabrication: The light approach

Mar 04, 2011

Materials that conduct electricity but which are also transparent to light are important for electronic displays, cameras and solar cells. The industry’s standard material for these applications is indium ...

Gold nanoparticles enrich every day products

May 05, 2010

(PhysOrg.com) -- Durable paint, water purification, faster computers, tougher shoe soles, and lighter and cheaper televisions are all possibilities now that a Queensland University of Technology (QUT) scientist has discovered ...

Recommended for you

Making 'bucky-balls' in spin-out's sights

6 hours ago

(Phys.org) —A new Oxford spin-out firm is targeting the difficult challenge of manufacturing fullerenes, known as 'bucky-balls' because of their spherical shape, a type of carbon nanomaterial which, like ...

Polymer microparticles could help verify goods

Apr 13, 2014

Some 2 to 5 percent of all international trade involves counterfeit goods, according to a 2013 United Nations report. These illicit products—which include electronics, automotive and aircraft parts, pharmaceuticals, ...

New light on novel additive manufacturing approach

Apr 11, 2014

(Phys.org) —For nearly a century, electrophoretic deposition (EPD) has been used as a method of coating material by depositing particles of various substances onto the surfaces of various manufactured items. ...

User comments : 0

More news stories

Physicists create new nanoparticle for cancer therapy

A University of Texas at Arlington physicist working to create a luminescent nanoparticle to use in security-related radiation detection may have instead happened upon an advance in photodynamic cancer therapy.

Revealing camouflaged bacteria

A research team at the Biozentrum of the University of Basel has discovered an protein family that plays a central role in the fight against the bacterial pathogen Salmonella within the cells. The so cal ...