Multi-omics strategy gives systems-level insight toward Salmonella pathogenesis

Sep 20, 2011
Association network inferred from integrated proteomic and transcriptomic data is shown at left. The functional cluster containing known virulence factors is shown in detail at right. Blue proteins are those with similar expression and abundance profiles relative to known virulence proteins that were validated.

Researchers from Pacific Northwest National Laboratory and Oregon Health & Science University combined extensive ‘omics measurements with a novel computational network analysis approach to better understand the complex regulatory interactions in the pathogen Salmonella Typhimurium and identify virulence-related proteins that cause systemic infection in a host. Their results, which appeared in BMC Systems Biology, demonstrate the utility of this approach to infectious disease research and offer new biological insights that may lead to new prevention and treatment strategies.

Parallel transcriptomics and proteomics measurements of Salmonella wild-type and 14 mutant strains, each lacking a specific regulatory required for systemic infection, provided data for a systems approach to network analysis. From the resulting network predictions, the research team discovered proteins not previously known to be required for virulence. Additional cellular analysis revealed a subset of these bacterial proteins that were secreted into the host cytoplasm independent of the known Salmonella mechanisms for transporting virulence proteins into host cells.

"Of particular interest, we identified two new virulence proteins that revealed a new class of secreted and that we are currently investigating," said PNNL scientist Dr. Charles Ansong, one of the investigators.

Salmonella is a leading cause of food-borne illness and is the culprit bacterium in high-profile food recalls, such as peanut butter in 2008/2009 and the current one of ground turkey that has led to 77 illnesses and one fatality reported in the U.S. to date. Systemic bacterial infections such as those caused by Salmonella are highly regulated and complex processes that include sophisticated offensive and defensive strategies by both pathogen and host that are orchestrated by virulence factors. Identifying the proteins required for Salmonella virulence is important for developing approaches to effectively combat persistent and adapting pathogens.

The researchers used capillary liquid chromatography-mass spectrometry to extensively characterize proteins present in the wild-type and mutant strains.  Parallel whole-genome microarray analysis was used to determine the transcriptome in matched samples. 

Explore further: Scientists create mouse model to accelerate research on Ebola vaccines, treatments

More information: Yoon H, C Ansong, JE McDermott, MA Gritsenko, RD Smith, F Heffron, and JN Adkins. 2011. "Systems analysis of multiple regulator perturbations allows discovery of virulence factors in Salmonella." BMC Systems Biology 5:100. DOI: 10.1186/1752-0509-5-100

add to favorites email to friend print save as pdf

Related Stories

Plague proteome reveals proteins linked to infection

Nov 22, 2006

Recreating growth conditions in flea carriers and mammal hosts, Pacific Northwest National Laboratory scientists have uncovered 176 proteins and likely proteins in the plague-bacterium Yersinia pestis whose numbers rise ...

Salmonella: Trickier than we imagined

Jun 13, 2008

Salmonella is serving up a surprise not only for tomato lovers around the country but also for scientists who study the rod-shaped bacterium that causes misery for millions of people.

Recommended for you

Researchers capture picture of microRNA in action

20 hours ago

Biologists at The Scripps Research Institute (TSRI) have described the atomic-level workings of "microRNA" molecules, which control the expression of genes in all animals and plants.

Blocking a fork in the road to DNA replication

22 hours ago

A team of Whitehead Institute scientists has discovered the surprising manner in which an enigmatic protein known as SUUR acts to control gene copy number during DNA replication. It's a finding that could shed new light on ...

Cell division, minus the cells

Oct 30, 2014

(Phys.org) —The process of cell division is central to life. The last stage, when two daughter cells split from each other, has fascinated scientists since the dawn of cell biology in the Victorian era. ...

A new method simplifies the analysis of RNA structure

Oct 30, 2014

To understand the function of an RNA molecule, similar to the better-known DNA and vital for cell metabolism, we need to know its three-dimensional structure. Unfortunately, establishing the shape of an RNA ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.