Researchers overcome major obstacle for stem cell therapies and research

Sep 08, 2011

Stem cells show great potential to enable treatments for conditions such as spinal injuries or Lou Gehrig's disease, and also as research tools. One of the greatest problems slowing such work is that researchers have found major complications in purifying cell mixtures, for instance to remove stem cells that can cause tumors from cells developed for use in medical treatments. But a group of Scripps Research scientists, working with colleagues in Japan, have developed a clever solution to this purification problem that should prove more reliable than other methods, safer, and perhaps 100 times cheaper.

The work appears in the current edition of the journal Cell Research.

Effective tricks for separating from other types are essential for many emerging medical treatments. These techniques begin with researchers inducing stem cells to take specific forms, or differentiate, for instance into . These differentiated cells might then be used to repair a injury. Other cells might enable a diabetic's body to produce adequate insulin.

A key problem is that in the differentiation process, at least some stem cells inevitably remain in their undifferentiated, or pluripotent, state. These cells can grow to form tumors in patients if injected along with differentiated cells, a concern that has already led the US (FDA) to delay clinical trials for promising stem cell-based therapies.

A New Approach

To date, almost all attempts at purification have focused on developing —immune system attack cells—that can remove or destroy stem cells in mixtures. But this approach has had shortcomings. Effective antibodies are difficult and expensive to develop, and their use in medical therapies raises safety issues because they are produced in animals.

The Scripps Research team, led by Professor of Developmental Neurobiology Jeanne Loring, was looking for a new route to solve the purification and safety problems. The group recently began experimenting with chip-based tools known as lectin arrays. At various points on these devices, plant-produced proteins called lectins are attached. These lectins bind with specific sugars including some found on the surface of cells.

Working in the lab with cellular components, rather than whole cells, the Loring team first found that specific combinations of sugars and proteins known as glycoproteins on stem cells reliably bind to certain lectins. They were then able to exploit this connection to purify cell mixtures.

"When we discovered there was a specific binding pattern, we decided we should just go for it and see whether we could use the lectins to purify cells," said Yu-Chieh Wang, the first author of the research article. "We tested the idea and it works very well, and lectins are readily available and inexpensive."

After identifying the lectin that bound best with stem cells, the group took the work to the next level to show that they could actually separate out stem cells. To accomplish this, they first attached the lectin to tiny beads. Then they exposed these beads to mixtures of stem cells along with non-stem cells.

The researchers used a range of different types of both embryonic stem cells and induced pluripotent cells, which are embryonic stem cell-like cells that are produced by inserting certain genes into skin cells. They included cell lines from both Scripps Research and the labs of their collaborators in Japan and the United States.

In every case, the team found that the stem cells bound remarkably well to the beads, while the cells that washed past were almost all non-stem cells; this meant that both cell types could be collected separately for use in research or in treatments.

Purity's Potential

Possible uses for the new technique are essentially as numerous as those for stem cells themselves. Lectin purification could be used with any of a huge range of therapies currently in development. In addition to low cost and reliability, the lectins used are plant products, so they do not introduce the type of safety concerns that could arise from using antibodies that are produced by animal cells.

Even in more basic research, effective studies using stem or differentiated cells generally requires purification so that effects can be identified and tracked without introducing complications from impurities in a group of cells.

Loring's group, for instance, is studying the production of nerve cells that might be used to treat a specific type of autism caused by a known genetic mutation. Producing the nerve cells needed is a laborious process that will be more efficient with better purification.

The Loring team is also working to identify different binding patterns that would allow them to similarly purify of specific types of non-stem cells. "In theory, this should allow us to pull any cell type out of any mixture," she said of the basic lectin technique.

At the more basic research level, because all the different stem cell lines from both humans and animals seem to produce similar glycoproteins binding to the lectins, it is possible these glycoproteins infer some basic qualities fundamental to the pluripotent state. Loring and her colleagues are exploring this possibility in hopes of better understanding stem cells' still mysterious abilities to transform into any type of cell. "We may have uncovered something really fundamental about pluripotency," said Loring.

Explore further: Two-armed control of ATR, a master regulator of the DNA damage checkpoint

More information: "Specific lectin biomarkers for isolation of human pluripotent stem cells identified through array-based glycomic analysis," www.cell-research.com/AOP/September-6-4.htm

Related Stories

Sweet success for new stem cell ID trick

Nov 20, 2008

(PhysOrg.com) -- Biomaterial scientists in Manchester believe they have found a new way of isolating the ‘ingredients’ needed for potential stem cell treatments for nerve damage and heart disease.

Scientists isolate cancer stem cells

Sep 11, 2008

After years of working toward this goal, scientists at the OU Cancer Institute have found a way to isolate cancer stem cells in tumors so they can target the cells and kill them, keeping cancer from returning.

Study: Skin cells turned into stem cells

Aug 22, 2005

The controversy over embryonic stem cell research may become moot with a procedure that turns skin cells into what appear to be embryonic stem cells.

Recommended for you

Japanese scientist resigns over stem cell scandal

Dec 19, 2014

A researcher embroiled in a fabrication scandal that has rocked Japan's scientific establishment said Friday she would resign after failing to reproduce results of what was once billed as a ground-breaking study on ...

'Hairclip' protein mechanism explained

Dec 18, 2014

Research led by the Teichmann group on the Wellcome Genome Campus has identified a fundamental mechanism for controlling protein function. Published in the journal Science, the discovery has wide-ranging implications for bi ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

Silverhill
5 / 5 (1) Sep 09, 2011
To date, almost all attempts at purification have focused on developing antibodies--immune system attack cells--
Note: antibodies are protein molecules, not cells. They are produced by plasma cells, which are part of the leukocyte mechanism of the immune system.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.