Key protein reveals secret of stem cell pluripotency

Sep 06, 2011
Diagram of the Ccl2 and leukemia inhibitory factor (LIF) signal pathways integrating into the transcription network. Known LIF signal pathway is shown with black arrow. Our finding of Ccl2 signal pathway for promoting pluripotency is shown as dot black arrow. Abbreviations: IL-6R, interleukin-6 receptor; LIF, leukemia inhibitory factor; LIFR, leukemia inhibitory factor receptor; NC, negative control; PI(3)K, phosphoinositide 3-kinase. Credit: RIKEN

A protein that helps maintain mouse stem cell pluripotency has been identified by researchers at the RIKEN Omics Science Center. The finding, published in the August issue of Stem Cells (first published online July 26, 2011), points the way to advances in regenerative medicine and more effective culturing techniques for human pluripotent stem cells.

Through their capacity to differentiate into any other type of cell, (ES ) and induced-pluripotent (iPS cells) promise a new era of cell-based treatments for a wide range of conditions and diseases. Cultivating such cells, however, commonly relies on the use of so-called “feeder” cells to maintain in cell culture conditions. Feeder cells keep stem cells in their undifferentiated state by releasing nutrients into the culture medium, but they have the potential to introduce contamination which, in humans, can lead to serious health risks.

Previous research has shown that mouse can be cultured without feeder cells through the addition of a cytokine called Leukemia Inhibitory Factor (LIF) to the culture media (“feeder-free” culture). LIF is secreted by mouse feeder cells and activates signal pathways reinforcing a stem cell regulatory network. The researchers discovered early in their investigation, however, that the amount of LIF secreted from feeder cells is much less than the amount needed to maintain pluripotency in feeder-free conditions. This points to other, as-of-yet unknown contributing factors.

To clarify these factors, the research group analyzed differences in gene expression between mouse iPS cells cultured on feeder cells and those cultured in feeder-free (LIF treated) conditions. Their results revealed 17 genes whose expression level is higher in feeder conditions. To test for possible effects on pluripotency, they then selected 7 chemokines (small proteins secreted by cells) from among these candidates and overexpressed them in iPS cells grown in feeder-free conditions. They found that one chemokine in particular, CC chemokine ligand 2 (CCL2), enhances the expression of key pluripotent genes via activation of a well-known signal pathway known as Jak/Stat3.

While CCL2 is known for its role in recruiting certain cells to sites of infection or inflammation, the current research is the first to demonstrate that it also helps maintain iPS cell pluripotency. The findings also offer broader insights applicable to the cultivation of human iPS/ES cells, setting the groundwork for advances in regenerative medicine.

Explore further: New lab technique reveals structure and function of proteins critical in DNA repair

More information: Yuki Hasegawa, et al. "CC Chemokine Ligand 2 and Leukemia Inhibitory Factor Cooperatively Promote Pluripotency in Mouse Induced Pluripotent Cells." Stem Cells, 2011, DOI: 10.1002/stem.673

Related Stories

Recommended for you

The mechanics of life

Apr 16, 2015

An interdisciplinary research team formed by Otger Campàs, assistant professor in the Department of Mechanical Engineering at the University of California, Santa Barbara (UCSB), and colleague Jérome Gros, ...

New transitional stem cells discovered

Apr 16, 2015

Pre-eclampsia is a disease that affects 5 to 8 percent of pregnancies in America. Complications from this disease can lead to emergency cesarean sections early in pregnancies to save the lives of the infants and mothers. ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.