In immune cells, 'super-res' imaging reveals natural killers' M.O.

Sep 13, 2011
Electron micrograph image shows a lytic granule (yellow) within the actin network (blue) at the immune synapse of a natural killer cell. Credit: Gregory Rak and Jordan Orange, Children's Hospital of Philadelphia

Making use of a new "super resolution" microscope that provides sharp images at extremely small scales, scientists have achieved unprecedented views of the immune system in action. The new tool, a stimulated emission depletion (STED) microscope, shows how granules from natural killer cells pass through openings in dynamic cell structures to destroy their targets: tumor cells and cells infected by viruses. Deeper understanding of these biological events may allow scientists to devise more effective treatments for inherited diseases that impair the immune system.

"This new technology enables researchers to see individual elements previously below the physical limits of imaging using light," said study leader Jordan S. Orange, M.D., Ph.D., who holds the Jeffrey Modell Endowed Chair in Pediatric Immunology Research at The Children's Hospital of Philadelphia. Previously, could not "see" objects smaller than 200 (a nanometer is one millionth of a millimeter). The STED microscope at Children's Hospital uses a unique arrangement of lasers and fluorescence to image fine structures, such as , smaller than 60 nanometers.

The current study appears Sept. 13 in the online, open-access journal Public Library of Science Biology (PLoS Biology).

Orange, who runs a clinical program at Children's Hospital for pediatric primary immunodeficiency diseases, has long researched the biology of natural killer (NK) cells at the immunological synapse—the site where the NK cell attaches to its target cell and delivers cell-killing molecules. A crucial component of this highly regulated process is filamentous actin (F-actin), a structural protein in NK cells that forms a dense network through which cell-killing molecules called lytic granules move into the synapse.

The conventional view was that F-actin was not present at the center of the network, where granules are secreted through the synapse. Now under super-resolution, the current study, performed in both live human and cell lines, reveals that F-actin pervades the synapse, but leaves openings just large enough to allow granules to pass through. "At the same time, F-actin appears to be dynamically interacting with the granules to move them toward their targets," Orange added.

Orange compared the F-actin filaments to the rails of a roller coaster, but one that quickly rearranges itself to guide a rider through a narrow tunnel. Further studies of NK function, Orange said, will investigate energy utilization and biological mechanisms that allow the lytic granules to navigate the immunological synapse. He added, "As we better understand how this process is regulated, we will work toward manipulating immune response to treat immune deficiency disorders."

Explore further: Molecular gate that could keep cancer cells locked up

More information: "NK cell lytic granule secretion occurs through a pervasive actin network at the immune synapse," PLoS Biology, published online Sept. 13, 2011, www.plosbiology.org/article/in… journal.pbio.1001151

add to favorites email to friend print save as pdf

Related Stories

How actin networks are actin'

Jan 02, 2008

Dynamic networks of growing actin filaments are critical for many cellular processes, including cell migration, intracellular transport, and the recovery of proteins from the cell surface. In this week’s issue of the open-access ...

Video captures cellular 'workhorses' in action

Apr 28, 2011

Scientists at Yale University and in Grenoble France have succeeded in creating a movie showing the breakup of actin filaments, the thread-like structures inside cells that are crucial to their movement, maintenance and division.

Recommended for you

Molecular gate that could keep cancer cells locked up

14 hours ago

In a study published today in Genes & Development, Dr Christian Speck from the MRC Clinical Sciences Centre's DNA Replication group, in collaboration with Brookhaven National Laboratory (BNL), New York, ...

The 'memory' of starvation is in your genes

18 hours ago

During the winter of 1944, the Nazis blocked food supplies to the western Netherlands, creating a period of widespread famine and devastation. The impact of starvation on expectant mothers produced one of the first known ...

Sugar mimics guide stem cells toward neural fate

Jul 30, 2014

Embryonic stem cells can develop into a multitude of cells types. Researchers would like to understand how to channel that development into the specific types of mature cells that make up the organs and other structures of ...

User comments : 0