March on, Hydrogen! Mild but very efficient: new catalytic process extracts hydrogen from bioalcohols

September 28, 2011

(PhysOrg.com) -- Over 80% of the worlds energy demands continue to be met with fossil fuels. The environmental problems associated with this, such as global warming, are well-known. The efficient supply of energy based on renewable resources is becoming more pressing. Hydrogen technology, which involves the production of hydrogen from biomass for use in electricity production in fuel cells, is a very promising approach.

In the journal , researchers led by Matthias Beller at the Leibniz Institute for in Rostock (Germany) have now introduced a new catalyst that allows for the use of bioalcohols for the production of hydrogen. Their novel process proceeds efficiently under particularly mild conditions.

Ethanol and other alcohols do not willingly give up their ; this type of reaction requires highly active catalysts. Previous catalytic processes require downright drastic reaction conditions: temperatures above 200 C and the presence of strong bases. The Rostock researchers thus aimed to develop a catalyst that would also work efficiently at significantly milder temperatures.

Martin Nielson, working on Beller’s team thanks to an Alexander von Humboldt scholarship, has now been successful. The new catalyst demonstrates previously unachievable high efficiency in the extraction of hydrogen from alcohols under mild reaction conditions. Says Beller, “This is the first catalytic system that is capable of obtaining hydrogen from readily available ethanol at temperatures under 100 C without the use of bases or other additives.”

After initial successful tests with a relatively easily converted model alcohol (isopropanol), the researchers turned their attention to ethanol, also known as the “alcohol” in alcoholic beverages. Ethanol has taken on increasing importance as a renewable resource but is significantly harder to convert. “Even with ethanol, this new catalyst system demonstrated an unusually good conversion rate under milder conditions (60–80 C),“ says Beller. “In comparison to previous catalyst systems, this one is nearly an order of magnitude higher.”

The active catalyst consists of a ruthenium complex that is formed in situ. The starting point is a central ruthenium atom that is surrounded by a special ligand that grasps it from three sides. The other ligands are a carbon monoxide molecule and two hydrogen atoms. Upon heating, a hydrogen molecule (H2) is released from the complex. When the remaining complex comes into contact with ethanol or isopropanol it grabs two replacement hydrogen atoms, allowing the cycle to begin again.

Explore further: Renewable Raw Materials

More information: Matthias Beller, Efficient Hydrogen Production from Alcohols under Mild Reaction Conditions, Angewandte Chemie International Edition 2011, 50, No. 41, 9593–9597, dx.doi.org/10.1002/anie.201104722

Related Stories

Renewable Raw Materials

May 29, 2006

Petroleum and natural gas reserves are getting smaller and smaller. It is thus a real waste to burn up these valuable resources for heat or transportation especially as "black gold" is also the most important starting material ...

New Catalyst Paves the Path for Ethanol-Powered Fuel Cells

January 26, 2009

(PhysOrg.com) -- A team of scientists at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory, in collaboration with researchers from the University of Delaware and Yeshiva University, has developed a new ...

Baking powder for environmentally friendly hydrogen storage

June 14, 2011

(PhysOrg.com) -- Hydrogen is under consideration as a promising energy carrier for a future sustainable energy economy. However, practicable solutions for the easy and safe storage of hydrogen are still being sought. Despite ...

Recommended for you

Findings illuminate animal evolution in protein function

July 27, 2015

Virginia Commonwealth University and University of Richmond researchers recently teamed up to explore the inner workings of cells and shed light on the 400–600 million years of evolution between humans and early animals ...

New polymer able to store energy at higher temperatures

July 30, 2015

(Phys.org)—A team of researchers at the Pennsylvania State University has created a new polymer that is able to store energy at higher temperatures than conventional polymers without breaking down. In their paper published ...

How to look for a few good catalysts

July 30, 2015

Two key physical phenomena take place at the surfaces of materials: catalysis and wetting. A catalyst enhances the rate of chemical reactions; wetting refers to how liquids spread across a surface.

Yarn from slaughterhouse waste

July 29, 2015

ETH researchers have developed a yarn from ordinary gelatine that has good qualities similar to those of merino wool fibers. Now they are working on making the yarn even more water resistant.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.