Hubble movies reveal solarsystemsized traffic jams

Sep 01, 2011

(PhysOrg.com) -- When it comes to big-budget action movies, Rice University astronomer Patrick Hartigan prefers Hubble to Hollywood.

Using images collected over 14 years, Hartigan has created time-lapse movies that offer astronomers their first glimpse of the of , huge torrents of gas and particles that spew from the poles of .

An analysis of the movies that was published in The is forcing astronomers to rethink some of the processes that occur during the latter stages of . And in an effort to learn even more, Hartigan and colleagues are using powerful lasers to recreate a small-scale version of the solar-system-sized jets in a lab in upstate New York.

This video is not supported by your browser at this time.

"The Hubble's given us spectacular images," said Hartigan, professor of physics and astronomy at Rice. "In the nebulae where stars are born, for instance, we can see beautiful and detailed structure. We know these images are frozen snapshots in time, but we would need to watch for hundreds of thousands of years to see how things actually play out."

Hartigan said stellar jets are different because they move very quickly. Stellar jets blast out into space from the poles of newly formed stars at about 600,000 miles an hour. Astronomers first noticed them about 50 years ago, and they believe the sun probably had stellar jets when it formed about 4.5 billion years ago.

Hartigan began using Hubble to collect still frames of stellar jets in 1994. The jets emerge from each pole of a young star, and Hartigan used Hubble to revisit the jets from three stars in 1994, 1998 and 2008. All three stars are about 1,350 light years from Earth. Two are near the , and the third is in the in the constellation Vela.

By lacing the images together and using a computer to fill in what occurred between still frames, Hartigan and his collaborators created time-lapse movies. The movies clearly showed something that wasn't obvious in any of the still images; clouds of dust and gas within the jets move at different speeds.

"The bulk motion of the jet is about 300 kilometers per second," Hartigan said. "That's really fast, but it's kind of like watching a stock car race; if all the cars are going the same speed, it's fairly boring. The interesting stuff happens when things are jumbling around, blowing past one another or slamming into slower moving parts and causing shockwaves."

Understanding what happens in those huge collisions is another challenge. The phenomena didn't look like anything that Hartigan and his astronomer colleagues had seen. But when he showed them to colleagues who were familiar with the physics of nuclear explosions, they immediately saw patterns in the shockwaves that looked familiar.

"The fluid dynamicists immediately picked up on an aspect of the physics that astronomers typically overlook, and that led to a different interpretation for some of the features we were seeing," Hartigan explained. "The scientists from each discipline bring their own unique perspectives to the project, and having that range of expertise has proved invaluable for learning about this critical phase of stellar evolution."

Motivated by the results from Hubble, Hartigan and colleagues are conducting experiments at the Omega Laser Facility in Rochester, New York, to recreate small-scale versions of the solar-system-sized features captured in the movies.

"It's one more tool we have to better understand the underlying physics," Hartigan said.

Explore further: How baryon acoustic oscillation reveals the expansion of the universe

More information: Hartigan's Hubble Space Telescope movies are available at: sparky.rice.edu/~hartigan/movies.html

add to favorites email to friend print save as pdf

Related Stories

Hubble movies show traffic jam in stellar jets

Dec 05, 2005

Astronomers track massive shockwaves in plasma escaping newborn star Like traffic on a freeway, plasma spewing from the poles of newborn stars moves in clumps that travel at different speeds. When fast-moving ...

VLBA Movies Reveal New Details of Cosmic Jets

Jan 08, 2008

Astronomers have known for decades that supermassive black holes at the cores of galaxies can shoot out jets of subatomic particles at tremendous speeds. However, details about the physics of such jets, including how they ...

Recommended for you

The Great Cold Spot in the cosmic microwave background

Sep 19, 2014

The cosmic microwave background (CMB) is the thermal afterglow of the primordial fireball we call the big bang. One of the striking features of the CMB is how remarkably uniform it is. Still, there are some ...

Mystery of rare five-hour space explosion explained

Sep 17, 2014

Next week in St. Petersburg, Russia, scientists on an international team that includes Penn State University astronomers will present a paper that provides a simple explanation for mysterious ultra-long gamma-ray ...

User comments : 0