Is graphene the best quantum resistance standard?

September 19, 2011
Graphene has the potential to surpass conventional materials in many applications including quantum resistance metrology

New research from NPL's Quantum Detection Group presents the most precise measurements of the quantum Hall effect ever made, using the two-dimensional material graphene.

The quantum Hall effect defines a relationship between two fundamental physical constants: the Planck constant h and e. It is vitally important for a 'quantum-based' redefinition of the SI units of mass (kilogram) and current (ampere) based on these constants. Experiments are needed to test the quantum Hall effect in different materials in order to prove whether or not it is truly universal.

This research compared the quantum Hall effect in graphene with that observed in a traditional . Graphene is hotly tipped to surpass in many important applications, partly due to its extraordinary .

The results confirmed that the quantum Hall effect is truly universal with an uncertainty level of several parts in 1011, supporting the redefinition of the kilogram and ampere. They also suggest that graphene should be the material of choice for quantum resistance metrology.

JT Janssen, NPL Science Fellow and author of the research, said:

"Many metrology laboratories around the world have been striving to do this experiment and it is a real achievement that the NPL team and its co-workers were the first to get this key result. It turns out that the in graphene is very robust and easy to measure - not bad for a material that was only discovered 6 years ago."

The research was conducted in collaboration with the Bureau International des Poids et Mesures, Chalmers University of Technology (Sweden), Lancaster University (UK) and Linköping University (Sweden).

Explore further: Switchyard for single electrons

More information: Read the full paper.

Related Stories

Switchyard for single electrons

February 25, 2008

German scientists achieved to transfer very small charge "packets", comprising a well-defined number of few electrons, between metallic electrons precisely by using a single-electron pump. A single-electron transistor, being ...

Observing the Quantum Hall Effect in 'Real' Space

January 12, 2009

( -- When water transforms into steam, or magnetized iron changes to demagnetized iron, Katsushi Hashimoto explains to, a phase transition is taking place: “Classical phase transitions…often share ...

New study confirms exotic electric properties of graphene

November 17, 2009

( -- First, it was the soccer-ball-shaped molecules dubbed buckyballs. Then it was the cylindrically shaped nanotubes. Now, the hottest new material in physics and nanotechnology is graphene: a remarkably flat ...

Shining light on graphene sensors

January 10, 2011

National Physical Laboratory, together with an international team of scientists, have published research showing how light can be used to control graphene's electrical properties. This advance is an important step towards ...

Recommended for you

CERN collides heavy nuclei at new record high energy

November 25, 2015

The world's most powerful accelerator, the 27 km long Large Hadron Collider (LHC) operating at CERN in Geneva established collisions between lead nuclei, this morning, at the highest energies ever. The LHC has been colliding ...

Exploring the physics of a chocolate fountain

November 24, 2015

A mathematics student has worked out the secrets of how chocolate behaves in a chocolate fountain, answering the age-old question of why the falling 'curtain' of chocolate surprisingly pulls inwards rather than going straight ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Sep 19, 2011
The graphene's light absorbtion enables to measure fine structure constant directly.


But I don't think, it will improve the kilogram definition, which depends on the vacuum density, which can change with presence of cold neutrinos and axions in rather uncontrollable way.




Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.