Good vibrations for future quantum computers

September 7, 2011
Top of a quantum dot © Alexander Kleinsorge

( -- The enigmatic quantum dot is the basic building block for quantum computers. EPFL physicists have developed a new theory which shows that dot symmetry is enough to account for most of their intriguing optical properties.

Physicists have created a pyramidal dot that’s just shy of 100 nanometers high, about 200 atoms on a side. By applying voltage to this miniature structure, the scientists have created a device that can emit light, which could then be used in future components of quantum computers. But the road to this new kind of computing is still long, particularly because determining the of these is a complicated and computationally intensive endeavor. Marc-André Dupertuis and his team from EPFL’s Laboratory of Physics of Nanostructures have proposed, and observationally verified, a new physical theory that not only reduces the time needed to perform these calculations, but also, and above all, allows us simply to better understand the nature of these strange objects.

When electrical charges are injected into quantum dots, they start to vibrate. This is what physicists call the wave function, which in this case vibrates a bit like the head of a drum. One would think that simulating these vibrations would be extremely complex, but Dupertuis realized that the wave behavior, and thus the light emitted by the quantum dot, could be determined sufficiently by . Because of this, the calculation could be simplified using a familiar mathematical tool known as group theory.

Better understanding on the back of a napkin

The strength of this approach is its relative simplicity. The physicists can deduce the optical properties of quantum dots based on symmetries that they suspect are there, and then verify the presence of the symmetries experimentally. “Calculations that up to now required supercomputers can now be replaced by other calculations that can be done on the back of a napkin,” Dupertuis says.

Dupertuis had to overcome a serious difficulty in order to come up with the theory – he had to be able to simplify it sufficiently, while still taking into account the strange properties that govern the quantum world. Imagine a cake cut into symmetric slices, but whose edges don’t all look the same; you’d have to arrange the slices in a specific order to put the cake back together again. This is the kind of mathematical and quantum challenge that the physicist is tackling.

A promising advance

This obstacle aside, the method is very promising. “Using proven observational methods, we can precisely deduct the exact symmetry of the quantum dot, as well as the properties of the electrical charge it contains and even what kind of photons it will emit.” This information will be useful in designing new devices that could be used in quantum computers.

Explore further: Engineers at USC and UT-Austin boost the sensitivity of night vision goggles by using quantum dots

More information: Symmetries and the polarized optical spectra from exciton complexes in quantum dots, M. A. Dupertuis, K. F. Karlsson, D. Y. Oberli, et al., Physical Review Letters, 06.09.2011

Related Stories

In Brief: Quantum dot-Induced transparency

December 1, 2010

Using rigorous and realistic numerical simulations, staff in the Nanophotonics and Theory and Modeling groups at the Argonne National Laboratory have recently demonstrated that a single semiconductor nanocrystal, or quantum ...

Single quantum dot nanowire photodetectors

December 14, 2010

Moving a step closer toward quantum computing, a research team in the Netherlands recently fabricated a photodetector based on a single nanowire, in which the active element is a single quantum dot with a volume of a mere ...

Quantum dots are not dots: physicists

December 21, 2010

Researchers from the Quantum Photonics Group at DTU Fotonik in collaboration with the Niels Bohr Institute, University of Copenhagen surprise the scientific world with the discovery that light emission from solid-state photon ...

Recommended for you

Plant cellulose prevents short circuits in batteries

July 22, 2016

(—In order to prevent short circuits in batteries, porous separator membranes are often placed between a battery's electrodes. There is typically a tradeoff involved, since these separators must simultaneously ...

Smallest hard disk to date writes information atom by atom

July 18, 2016

Every day, modern society creates more than a billion gigabytes of new data. To store all this data, it is increasingly important that each single bit occupies as little space as possible. A team of scientists at the Kavli ...

Ultrasensitive sensor using N-doped graphene

July 22, 2016

A highly sensitive chemical sensor based on Raman spectroscopy and using nitrogen-doped graphene as a substrate was developed by an international team of researchers working at Penn State. In this case, doping refers to introducing ...

A glimpse inside the atom

July 18, 2016

An electron microscope can't just snap a photo like a mobile phone camera can. The ability of an electron microscope to image a structure – and how successful this imaging will be – depends on how well you understand ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Sep 08, 2011
I love these sorts of stories. I've always leaned a bit closer to the engineering side of the engineer/scientist bridge, and the above strikes me as more of an engineering type of issue. I.e, it may not be as accurate and take into account as many variables, but it provides an answer that is more than good enough to continue on with whatever is being made.

Nothing against scientists of course, but I'm sure there are many engineers on here who have worked with scientists who know what I'm talking about...

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.