First German genome comprehensively resolved at its molecular level

Sep 12, 2011

Max Planck researchers analyze the two chromosome sets in the human genome separately for the first time.

Errors in the copying and reading of can have very serious consequences. Fortunately human genetic material is available in duplicate as everyone inherits a complete from both their mother and father. However, the two genomes are different: researchers refer to the different variants of the on the individual chromosomes as "haplotypes" and the complete analysis of the genome requires detailed knowledge of both haplotypes. Scientists at the Max Planck Institute for Molecular Genetics in Berlin have now comprehensively decoded both sets of chromosomes from a separately for the first time. This step is essential for gaining a deeper understanding of human biology, the analysis of disease risks and, accordingly, the development of new and more individualised strategies for the prevention and treatment of diseases. The genome fully decoded by Margret Hoehe's team is also the first completely sequenced genome of a German individual.

Everyone inherits a genome from their mother and father, meaning that each of their 22 chromosomes (autosomes), including the genes they contain, exist in duplicate. The only exceptions to this rule are the two (23rd chromosome pair). The two chromosome sets differ from each other, and these different versions at equivalent are called haplotypes. Scientists from the Max Planck Institute for in Berlin have now resolved a human genome almost completely into its molecular haplotypes, thus decoding the two individual genomes. In the current edition of the journal Genome Research, Margret Hoehe and her colleagues describe how they assigned over 99 percent of all base differences (), a total of over three million SNPs, to one of the two versions of each chromosome. This is the first German genome to have been completely decoded and the first to be analysed at this previously unattained level of detail.

Current sequencing technologies do not deliver both sets of chromosomes separately but instead provide a composite of both versions. Therefore, the scientists had to develop a new method to be able to identify the different sequences of genetic letters for both versions of the chromosomes separately. "In essence, we each have two genomes, inherited from each of our parents, and we need to look at these separately and at their interactions to fully understand the biology of genomes," says Margret Hoehe, leader of the research group. "We constantly refer to 'the' genome. However, it is essential for the development of personalised medicine that an individual's two sets of chromosomes are considered separately as they can differ regarding their genetic codes and, consequently also, their encoded functions."

This comprehensive systematic analysis of the haplotypes of a human genome, carried out in Berlin, represents an important scientific advancement. In their study, which was funded by the German National Network, Hoehe and her team succeeded in separately decoding for both chromosome sets the sequence of almost all of the genes in the genome of a 51-year-old German male. Importantly, 90 percent of the genes exist in two different molecular forms. "The two chromosome sets in our personal genome differ at a total of about two million positions. Consequently, in order to portray our natural biological blueprint in its entirety, instead of reading the genome as a mixed product, as was previously the case, in future, each of the two haplotypes must be determined separately," says Hoehe.

The scientists also succeeded for the first time in recording a genome in its molecular individuality. Between 60 and 70 percent, i.e. the majority of the genes, only arise in their characteristic molecular forms in the individual whose genome has just been analysed. "Our findings show very clearly that the biology of genes and genomes has a strong individual component," explains Hoehe. This insight is particularly important for the development of personalised treatments for individual patients as "for truly effective personalised medicine we must know both of a person's haplotypes because both influence his or her state of health or disease," says Hoehe. A good example of this is the BRCA1 gene, which causes a predisposition for breast cancer in its mutated form. The genome of the 51-year-old subject examined in this study carries two mutations in this breast cancer gene – fortunately in the same gene copy. The copy on the other chromosome is unaltered. As a consequence, despite these two mutations, the genome has a healthy version of the gene. "The knowledge whether mutations affect both haplotypes is essential to be able to assess a patient's future risk of developing a disease," says Hoehe. Overall, the scientists identified 159 mutated genes in their test subject with a disease-predisposing potential, which can impair the function of proteins. In 86 of these genes, the mutations were found in the same copy of the gene.

The findings of the Max Planck scientists raise new and fundamental questions for future consideration: How do the two different molecular forms of a gene behave towards each other? Do they work together or against each other? Which of the two gene forms is dominant and why? A gene can only make a person sick if one form of it overrides the other or if both copies are affected. "Therefore, the distinction of haplotypes is essential to enable us to understand in future how diseases arise and how they can be treated," says Hoehe.

Explore further: Bitter food but good medicine from cucumber genetics

More information: A comprehensively molecular haplotype-resolved genome of a European individual
Eun-Kyung Suk, Gayle K. McEwen, Jorge Duitama, Katja Nowick, Sabrina Schulz, Stefanie Palczewski, Stefan Schreiber, Dustin T. Holloway, Stephen McLaughlin, Heather Peckham, Clarence Lee, Thomas Huebsch, and Margret R. Hoehe
Genome Research, 7 September 2011; doi:10.1101/gr.125047.111 (advance online publication)

add to favorites email to friend print save as pdf

Related Stories

Human chromosome 3 is sequenced

Apr 27, 2006

The sequencing of human chromosome 3 at Baylor College represents the final stage of a multi-year project to sequence the human genome.

All genes in one go

Aug 29, 2010

The majority of rare diseases are hereditary. But despite significant progress in genome research, in most cases their exact cause remains unclear. The discovery of the underlying genetic defect is, however, ...

New genome sequencing targets announced

Jul 24, 2006

The U.S. National Human Genome Research Institute has announced several new sequencing targets, including the northern white-cheeked gibbon.

Mouse to man: The story of chromosomes

Apr 19, 2006

U.S. scientists say sequencing human chromosome 17 and mouse chromosome 11 has offered unique insights into the evolution of the genome of higher mammals.

Researchers examine human embryonic stem cell genome

Mar 27, 2008

Stem cell researchers from UCLA used a high resolution technique to examine the genome, or total DNA content, of a pair of human embryonic stem cell lines and found that while both lines could form neurons, the lines had ...

Chimp and human Y chromosomes evolving faster than expected

Jan 13, 2010

(PhysOrg.com) -- Contrary to a widely held scientific theory that the mammalian Y chromosome is slowly decaying or stagnating, new evidence suggests that in fact the Y is actually evolving quite rapidly through continuous, ...

Recommended for you

Parasitic worm genomes: largest-ever dataset released

3 hours ago

The largest collection of helminth genomic data ever assembled has been published in the new, open-access WormBase-ParaSite. Developed jointly by EMBL-EBI and the Wellcome Trust Sanger Institute, this new ...

Bitter food but good medicine from cucumber genetics

23 hours ago

High-tech genomics and traditional Chinese medicine come together as researchers identify the genes responsible for the intense bitter taste of wild cucumbers. Taming this bitterness made cucumber, pumpkin ...

New button mushroom varieties need better protection

Nov 27, 2014

A working group has recently been formed to work on a better protection of button mushroom varieties. It's activities are firstly directed to generate consensus among the spawn/breeding companies to consider ...

Cataloguing 10 million human gut microbial genes

Nov 25, 2014

Over the past several years, research on bacteria in the digestive tract (gut microbiome) has confirmed the major role they play in our health. An international consortium, in which INRA participates, has developed the most ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.