Copying geckos’ toes

Sep 05, 2011 By Eugene Low
Artificial hairs just a few hundred nanometers in diameter mimic the adhesive surface of a gecko’s toe-pads. Credit: Agency for Science, Technology and Research

Geckos are famous for their ability to walk up walls and scamper across ceilings. The dry-adhesive surface of geckos’ toes has inspired many attempts to copy this ability in an artificial material. Isabel Rodríguez at the A*STAR Institute of Materials Research and Engineering and co-workers at Nanyang Technological University in Singapore have now made one of the closest mimics to gecko toes yet, and shown that it has the properties to match.

The ’ ability to cling to surfaces is not due to glue but to the millions of microscopic hairs that coat the surface of their toes. Each hair has a branched, hierarchical structure—toward its tip, each fiber breaks into multiple sub-fibers, which in turn break into hundreds of fibrils 100–200 nanometers in diameter. This structure ensures a high surface area, which helps the gecko to cling to the wall. In addition, the hairs become more flexible as they become thinner, which helps to maximize the number of fibrils in contact with the wall.

Rodríguez and her co-workers have successfully mimicked this hierarchical structure through the use of an anodization technique that allows branched nanopores to be etched controllably into sheets of aluminium foil—a process they used to form templates with which to create the dry adhesive surface. These templates were stamped into sheets of polycarbonate plastic using a process known as capillary force-assisted nanoimprinting, forming a hairy polycarbonate surface.

To evaluate the qualities of the hierarchical hair structure, the researchers created two separate surfaces: one with simple, unbranched hairs; and one in which the hairs branched at their tips to form nanoscopic fibrils (pictured) closely resembling those found on gecko toe-pads. They found that the sheer adhesion force of the branched material was 150% greater than that of the linear material.

“One of the most important findings from the study is the insight of how the fibrils can be made using a simple process,” says Rodríguez. “There have been reports of other hierarchical structures fabricated in polymers, but the fabrication methods they use are rather costly and complicated and not suitable for large scale.” The relatively high cost of previous attempts is due to the way the template is made—a problem that the team have now overcome using their porous alumina template technology. “Our branched, porous template fabrication is straightforward and allows large areas of gecko-like structures to be fabricated at low cost,” she adds.

Explore further: Atom-thick CCD could capture images: Scientists develop two-dimensional, light-sensitive material

More information: Ho, A., et al. Fabrication and analysis of gecko-inspired hierarchical polymer nanosetae. ACS Nano 5, 1897–1906 (2011). pubs.acs.org/doi/abs/10.1021/nn103191q

Provided by Agency for Science, Technology and Research (A*STAR)

5 /5 (6 votes)
add to favorites email to friend print save as pdf

Related Stories

Duct tape that never loses its stick

Jan 07, 2005

Gecko feet hold key to development of self-cleaning adhesives Duct tape that never loses its stick. Bandages that come off without sticky residue or an "ouch." Gecko feet may hold the key to the developmen ...

Scientists trace gecko footprint, find clue to glue

Aug 25, 2011

Geckos' ability to scamper up walls with ease has long inspired scientists who study the fine keratin hairs on these creatures' footpads, believed responsible for the adhesion. Researchers at The University ...

Secrets of the gecko foot help robot climb (w/ Video)

Aug 24, 2010

(PhysOrg.com) -- The science behind gecko toes holds the answer to a dry adhesive that provides an ideal grip for robot feet. Stanford mechanical engineer Mark Cutkosky is using the new material, based on ...

Humidity makes gecko feet stickier

Oct 15, 2010

Geckos have amazingly sticky feet. Their stickability comes from billions of dry microscopic hairs that coat the soles of their feet. However, when humidity increases, gecko feet stick even tighter to smooth ...

Recommended for you

The simplest element: Turning hydrogen into 'graphene'

Dec 16, 2014

New work from Carnegie's Ivan Naumov and Russell Hemley delves into the chemistry underlying some surprising recent observations about hydrogen, and reveals remarkable parallels between hydrogen and graphene ...

Future batteries: Lithium-sulfur with a graphene wrapper

Dec 16, 2014

What do you get when you wrap a thin sheet of the "wonder material" graphene around a novel multifunctional sulfur electrode that combines an energy storage unit and electron/ion transfer networks? An extremely ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

CapitalismPrevails
1 / 5 (1) Sep 05, 2011
Wow, imagine hanging pictures in your room with any nails or adhesives. This would be great.
poof
not rated yet Sep 06, 2011
It might work for a 30g lizard....

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.