Exploring the 'last frontier' of our genome

Sep 23, 2011 By Viviane Callier
In this image of a human cell, the centromeres are the pink spots and the blue "sticks" are chromosomes. Credit: Karen Hayden, Duke

The human genome first appeared in print in 2001. But scientists aren’t done yet. There’s part of our DNA that geneticists have yet to assemble a sequence for: the centromeres.

Centromeres are necessary for chromosomes to segregate during cell division so that each new cell receives a complete copy of the . If chromosome segregation does not occur correctly, the resulting cells could die or become cancerous.

The sequence of centromeres remains one of the mysterious regions in the human genome because these areas are made of highly repetitive DNA sequences called satellite DNAs, said Karen Hayden, a recent graduate of Hunt Willard’s lab in Duke’s IGSP.

Centromere sequences are currently represented as gaps or spaceholders in the genome. Hayden, however, has developed a new strategy to study these elusive arrangements of DNA.

To study genomic material, scientists first break it into small pieces and sequence them. Then, much like a puzzle, they reassemble the pieces into the full sequence.

But when highly repetitive DNA, such as is found in centromeres, is broken into pieces, the parts of the puzzle look strikingly similar. As a result, scientists have trouble knowing if they have truly reassembled the pieces into the original sequence.

Using computational methods and studying the centromere sequences in the lab, however, Hayden was able to solve the puzzle and determine sequence arrangement in human centromeres. She also created a database to analyze the variations in among centromere sequences in the .

Hayden said she hopes that the experiments she designed, along with the database of sequences, will provide the tools to study whether certain centromere sequences are more highly associated with diseases, such as cancer and birth defects.

This fall she will go to the Segal Lab at the Weizmann Institute in Israel to model the physical properties of centromeric sequences and study if centromeric play a role in the centromere function. She then plans to continue her work in David Haussler’s lab at UC Santa Cruz.

Explore further: The malaria pathogen's cellular skeleton under a super-microscope

add to favorites email to friend print save as pdf

Related Stories

Centromeres cross over, a lot

Jun 12, 2008

Recombination at centromeres is higher than anywhere else on the chromosome, even though methyltransferases do their best to prevent it, say Jaco et al., as published in the June 16 issue of the Journal of Cell Biology.

Genome sequence for the domestic horse unveiled

Nov 05, 2009

The whole genome sequence of the domestic horse has been completed by the genome-sequencing center of The Broad Institute of MIT and Harvard, in collaboration with an international team of researchers that ...

Degrading proteins to divide cells

Aug 26, 2011

A group of scientists led by the IRB Barcelona, Spain, researcher Ferran Azora­n has identified the main instrument that Drosophila cells use to define the identity and function of the centromere in the Drosophila. A ...

Human chromosome 3 is sequenced

Apr 27, 2006

The sequencing of human chromosome 3 at Baylor College represents the final stage of a multi-year project to sequence the human genome.

Recommended for you

For resetting circadian rhythms, neural cooperation is key

18 hours ago

Fruit flies are pretty predictable when it comes to scheduling their days, with peaks of activity at dawn and dusk and rest times in between. Now, researchers reporting in the Cell Press journal Cell Reports on April 17th h ...

Rapid and accurate mRNA detection in plant tissues

19 hours ago

Gene expression is the process whereby the genetic information of DNA is used to manufacture functional products, such as proteins, which have numerous different functions in living organisms. Messenger RNA (mRNA) serves ...

For cells, internal stress leads to unique shapes

Apr 16, 2014

From far away, the top of a leaf looks like one seamless surface; however, up close, that smooth exterior is actually made up of a patchwork of cells in a variety of shapes and sizes. Interested in how these ...

User comments : 0

More news stories

Scientists tether lionfish to Cayman reefs

Research done by U.S. scientists in the Cayman Islands suggests that native predators can be trained to gobble up invasive lionfish that colonize regional reefs and voraciously prey on juvenile marine creatures.

Deadly human pathogen Cryptococcus fully sequenced

Within each strand of DNA lies the blueprint for building an organism, along with the keys to its evolution and survival. These genetic instructions can give valuable insight into why pathogens like Cryptococcus ne ...

Leeches help save woman's ear after pit bull mauling

(HealthDay)—A pit bull attack in July 2013 left a 19-year-old woman with her left ear ripped from her head, leaving an open wound. After preserving the ear, the surgical team started with a reconnection ...

Venture investments jump to $9.5B in 1Q

Funding for U.S. startup companies soared 57 percent in the first quarter to a level not seen since 2001, as venture capitalists piled more money into an increasing number of deals, according to a report due out Friday.