New etch process developed at the CNST uses argon pulsing to improve silicon etch rate and selectivity

September 29, 2011 By Lei Chen

Engineers in the CNST NanoFab have developed a new plasma etching technique for silicon which improves the etch rate, the mask selectivity, and the sidewall profile by optimizing the addition of argon to the process flow.  Small and high aspect ratio silicon structures can now be easily and more rapidly fabricated in the NanoFab using fluorinated plasma chemistry that is inherently isotropic.

Directly adding to a typical SF6/C4F8 plasma primarily causes dilution and reduces the etch rate.  By alternating the etch step with an argon-only step, both high selectivity and high etch rates were obtained while maintaining anisotropic etching.

In a deep silicon etch, C4F8 is used to protect the Si sidewalls and SF6 is used to etch.  Mixing argon with the etchant gases provides very limited or no improvement to the etch rate due to dilution.  

However, alternating argon surface bombardment steps with the chemical etch steps results in a four-fold increase in the silicon etch rate while maintaining vertical sidewalls. 

The silicon etch rate increases with the argon step time, independent of the SF6 step time, and the argon bombardment step is rate-determining.  It influences the etch rate, as well as the selectivity and etching profile. 

The engineers postulate that argon surface bombardment renders the top atomic layers of the silicon amorphous, and then gas phase fluorine can react with and remove the silicon.  With the long etch times associated with deep trench etching, this faster process is likely to become widely used. 

Explore further: IKONICS Announces New RapidMask Film

More information: Effect of alternating Ar and SF6/C4F8 gas flow in Si nano-structure plasma etching, L. Chen, et al., Microelectronic Engineering 88, 2470-2473 (2011).

Related Stories

IKONICS Announces New RapidMask Film

July 21, 2004

IKONICS Corporation, a Duluth based imaging technology company, announced today the introduction of a new product to its successful RapidMask(TM) line of photoresist films. RapidMask(TM) High Tack opens up new markets to ...

Trenches create memory space

September 12, 2006

The requirements are tightening up. Computers are having to become more and more efficient. A new technology boosts memory capacity: etching the silicon wafer creates deep trenches that increase its capacity to store data.

The fine art of etching

June 8, 2011

(PhysOrg.com) -- They see more than the naked eye and could make traffic safer: miniaturized thermal imaging sensors. But they are difficult to manufacture on a commercial scale. Researchers have now developed a new system. ...

Recommended for you

Meet the high-performance single-molecule diode

July 29, 2015

A team of researchers from Berkeley Lab and Columbia University has passed a major milestone in molecular electronics with the creation of the world's highest-performance single-molecule diode. Working at Berkeley Lab's Molecular ...

Reshaping the solar spectrum to turn light to electricity

July 28, 2015

When it comes to installing solar cells, labor cost and the cost of the land to house them constitute the bulk of the expense. The solar cells—made often of silicon or cadmium telluride—rarely cost more than 20 percent ...

Could stronger, tougher paper replace metal?

July 24, 2015

Researchers at the University of Maryland recently discovered that paper made of cellulose fibers is tougher and stronger the smaller the fibers get. For a long time, engineers have sought a material that is both strong (resistant ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.