Researchers demonstrate an electrochromic nanoplasmonic optical switch

Sep 01, 2011

In a recent article in Nano Letters, CNST researchers describe a new high-contrast, low operating-voltage, electrochemical optical switch that uses a volume of active dye orders-of-magnitude smaller than that of conventional electrochromic devices.

Electrochromism refers to a reversible change in the optical absorption of a material under an applied voltage. Inorganic and organic electrochromic materials are used in displays, smart windows, and car rearview mirrors. A change in in such a material is caused by a change in the , and requires that both and diffuse through the material. Decreasing the material’s thickness reduces the diffusion time, making the electrochromic switch faster, but unfortunately also reduces the contrast.

The NIST and University of Maryland researchers have grown crystals of the electrochromic dye Prussian Blue inside a gold nanoslit waveguide where light propagates as a surface plasmon polariton (SPP). SPPs are collective charge oscillations coupled to an external electromagnetic field that propagate along an interface between a metal and a dielectric.

The dye nanocrystals, deposited on the sidewalls of the slit by cyclic voltammetry, can be electrochemically switched to provide a transmission change ≈ 96 % (in the red) using control voltages less than 1 V. The high switching contrast is enabled by the strong spatial overlap between the SPPs and the nanocrystals confined within the slit. The contrast is also enhanced by the unexpectedly high absorption coefficient of Prussian Blue nanocrystals grown on a gold surface compared with bulk material.

The switch operates efficiently even with a relatively low fill fraction of active material in the slit (≈ 25 %), leading to a large contact area with the electrolyte. Because the light propagates in a direction perpendicular to the direction of the charge transport between the electrolyte and the ultrathin dye layer inside the nanoslit, the new switch design offers significant promise for creating electrochromic devices with record switching speeds.

Explore further: 3-D images of tiny objects down to 25 nanometres

More information: An integrated electrochromic nanoplasmonic optical switch, A. Agrawal, C. Susut, G. Stafford, U. Bertocci, B. McMorran, H. J. Lezec, and A. A. Talin, Nano Letters 11, 2774-2778 (2011).

Related Stories

Wafer-Thin Color Displays for Packaging

Oct 07, 2005

Color displays may one day be used practically everywhere. And this would be possible even where it’s unprofitable today for cost reasons, such as on food cartons, medicine packaging or admission tickets. ...

Recommended for you

3-D images of tiny objects down to 25 nanometres

12 hours ago

Scientists at the Paul Scherrer Institute and ETH Zurich (Switzerland) have created 3D images of tiny objects showing details down to 25 nanometres. In addition to the shape, the scientists determined how ...

Solving molybdenum disulfide's 'thin' problem

Mar 27, 2015

The promising new material molybdenum disulfide (MoS2) has an inherent issue that's steeped in irony. The material's greatest asset—its monolayer thickness—is also its biggest challenge.

Snowflakes become square with a little help from graphene

Mar 25, 2015

The breakthrough findings, reported in the journal Nature, allow better understanding of the counterintuitive behaviour of water at the molecular scale and are important for development of more efficient techno ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.