Researchers demonstrate an electrochromic nanoplasmonic optical switch

Sep 01, 2011

In a recent article in Nano Letters, CNST researchers describe a new high-contrast, low operating-voltage, electrochemical optical switch that uses a volume of active dye orders-of-magnitude smaller than that of conventional electrochromic devices.

Electrochromism refers to a reversible change in the optical absorption of a material under an applied voltage. Inorganic and organic electrochromic materials are used in displays, smart windows, and car rearview mirrors. A change in in such a material is caused by a change in the , and requires that both and diffuse through the material. Decreasing the material’s thickness reduces the diffusion time, making the electrochromic switch faster, but unfortunately also reduces the contrast.

The NIST and University of Maryland researchers have grown crystals of the electrochromic dye Prussian Blue inside a gold nanoslit waveguide where light propagates as a surface plasmon polariton (SPP). SPPs are collective charge oscillations coupled to an external electromagnetic field that propagate along an interface between a metal and a dielectric.

The dye nanocrystals, deposited on the sidewalls of the slit by cyclic voltammetry, can be electrochemically switched to provide a transmission change ≈ 96 % (in the red) using control voltages less than 1 V. The high switching contrast is enabled by the strong spatial overlap between the SPPs and the nanocrystals confined within the slit. The contrast is also enhanced by the unexpectedly high absorption coefficient of Prussian Blue nanocrystals grown on a gold surface compared with bulk material.

The switch operates efficiently even with a relatively low fill fraction of active material in the slit (≈ 25 %), leading to a large contact area with the electrolyte. Because the light propagates in a direction perpendicular to the direction of the charge transport between the electrolyte and the ultrathin dye layer inside the nanoslit, the new switch design offers significant promise for creating electrochromic devices with record switching speeds.

Explore further: Scientists unveil new technology to better understand small clusters of atoms

More information: An integrated electrochromic nanoplasmonic optical switch, A. Agrawal, C. Susut, G. Stafford, U. Bertocci, B. McMorran, H. J. Lezec, and A. A. Talin, Nano Letters 11, 2774-2778 (2011).

add to favorites email to friend print save as pdf

Related Stories

Wafer-Thin Color Displays for Packaging

Oct 07, 2005

Color displays may one day be used practically everywhere. And this would be possible even where it’s unprofitable today for cost reasons, such as on food cartons, medicine packaging or admission tickets. ...

Recommended for you

Relaxing DNA strands by using nano-channels

20 hours ago

A simple and effective way of unravelling the often tangled mass of DNA is to 'thread' the strand into a nano-channel. A study carried out with the participation of the International School for Advanced Studies ...

Сalculations with nanoscale smart particles

Aug 19, 2014

Researchers from the Institute of General Physics of the Russian Academy of Sciences, the Institute of Bioorganic Chemistry of the Russian Academy of Sciences and MIPT have made an important step towards ...

Nanostructure enlightening dendrite-free metal anode

Aug 19, 2014

Graphite anodes have been widely used for lithium ion batteries (LIBs) during the past two decades. The replacement of metallic lithium with graphite enables safe and highly efficient operation of LIBs, however, ...

Bacterial nanowires: Not what we thought they were

Aug 18, 2014

For the past 10 years, scientists have been fascinated by a type of "electric bacteria" that shoots out long tendrils like electric wires, using them to power themselves and transfer electricity to a variety ...

User comments : 0