Researchers demonstrate an electrochromic nanoplasmonic optical switch

Sep 01, 2011

In a recent article in Nano Letters, CNST researchers describe a new high-contrast, low operating-voltage, electrochemical optical switch that uses a volume of active dye orders-of-magnitude smaller than that of conventional electrochromic devices.

Electrochromism refers to a reversible change in the optical absorption of a material under an applied voltage. Inorganic and organic electrochromic materials are used in displays, smart windows, and car rearview mirrors. A change in in such a material is caused by a change in the , and requires that both and diffuse through the material. Decreasing the material’s thickness reduces the diffusion time, making the electrochromic switch faster, but unfortunately also reduces the contrast.

The NIST and University of Maryland researchers have grown crystals of the electrochromic dye Prussian Blue inside a gold nanoslit waveguide where light propagates as a surface plasmon polariton (SPP). SPPs are collective charge oscillations coupled to an external electromagnetic field that propagate along an interface between a metal and a dielectric.

The dye nanocrystals, deposited on the sidewalls of the slit by cyclic voltammetry, can be electrochemically switched to provide a transmission change ≈ 96 % (in the red) using control voltages less than 1 V. The high switching contrast is enabled by the strong spatial overlap between the SPPs and the nanocrystals confined within the slit. The contrast is also enhanced by the unexpectedly high absorption coefficient of Prussian Blue nanocrystals grown on a gold surface compared with bulk material.

The switch operates efficiently even with a relatively low fill fraction of active material in the slit (≈ 25 %), leading to a large contact area with the electrolyte. Because the light propagates in a direction perpendicular to the direction of the charge transport between the electrolyte and the ultrathin dye layer inside the nanoslit, the new switch design offers significant promise for creating electrochromic devices with record switching speeds.

Explore further: Team finds electricity can be generated by dragging saltwater over graphene

More information: An integrated electrochromic nanoplasmonic optical switch, A. Agrawal, C. Susut, G. Stafford, U. Bertocci, B. McMorran, H. J. Lezec, and A. A. Talin, Nano Letters 11, 2774-2778 (2011).

add to favorites email to friend print save as pdf

Related Stories

Wafer-Thin Color Displays for Packaging

Oct 07, 2005

Color displays may one day be used practically everywhere. And this would be possible even where it’s unprofitable today for cost reasons, such as on food cartons, medicine packaging or admission tickets. ...

Recommended for you

First direct observations of excitons in motion achieved

Apr 16, 2014

A quasiparticle called an exciton—responsible for the transfer of energy within devices such as solar cells, LEDs, and semiconductor circuits—has been understood theoretically for decades. But exciton ...

User comments : 0

More news stories

Thinnest feasible nano-membrane produced

A new nano-membrane made out of the 'super material' graphene is extremely light and breathable. Not only can this open the door to a new generation of functional waterproof clothing, but also to ultra-rapid filtration. The ...

Wiring up carbon-based electronics

Carbon-based nanostructures such as nanotubes, graphene sheets, and nanoribbons are unique building blocks showing versatile nanomechanical and nanoelectronic properties. These materials which are ordered ...

Better thermal-imaging lens from waste sulfur

Sulfur left over from refining fossil fuels can be transformed into cheap, lightweight, plastic lenses for infrared devices, including night-vision goggles, a University of Arizona-led international team ...

Hackathon team's GoogolPlex gives Siri extra powers

(Phys.org) —Four freshmen at the University of Pennsylvania have taken Apple's personal assistant Siri to behave as a graduate-level executive assistant which, when asked, is capable of adjusting the temperature ...