Dundee researchers make gene breakthrough

Sep 16, 2011

Researchers at the University of Dundee have made a significant breakthrough in understanding how human cells decode genes important for cell growth and multiplication.

Dr Joost Zomerdijk and colleagues in the Wellcome Trust Centre for and Expression in the College of at Dundee study the process of transcription, in which cells copy the DNA of into RNA, ultimately leading to the manufacture of proteins.

Transcription must be tightly controlled because otherwise the cells can die or they can grow and multiply without restraint, as seen in certain human diseases including cancer.

Dr Zomerdijk and his team have discovered a previously hidden link within the components of the transcription machinery, the details of which are published in a research paper in the journal Science.

'Three separate transcription machineries exist in . Each is important for transcription of a subset of genes within the cells and each is made up of one specific enzyme and several other groups of proteins that direct and control transcription activity.' said Dr Zomerdijk.

'The transcription machineries of RNA polymerases II and III contain TFIIB or TFIIB-like proteins, which are essential for transcription of their particular subsets of genes. It was surprising that a similar protein had not been identified as a component of the RNA polymerase I transcription machinery, which produces the millions of copies of ribosomal RNAs needed to sustain normal cell growth and multiplication.

'Now, we have discovered that the protein TAF1B, one of a group of proteins that directs the RNA polymerase I enzyme to the ribosomal RNA genes, is similar to TFIIB and Brf1 in structure and function.

'This discovery indicates that the three transcription machineries of human cells, which are likely to have evolved from a , are even more similar than previously realised.

'My lab and I are extremely excited to have discovered this important missing link. Furthermore, this research, funded primarily by the Wellcome Trust, advances our understanding of how normal transcription is maintained and controlled in human cells, which will help us to work out how transcription becomes deregulated in certain diseased cells and, potentially, how we can reverse such deregulation.'

Explore further: Study finds new links between number of duplicated genes and adaptation

Provided by University of Dundee

5 /5 (2 votes)
add to favorites email to friend print save as pdf

Related Stories

How RNA polymerase II gets the go-ahead for gene transcription

Oct 09, 2009

All cells perform certain basic functions. Each must selectively transcribe parts of the DNA that makes up its genome into RNAs that specify the structure of proteins. The set of proteins synthesized by a cell in turn determines ...

Rewrite the textbooks: Transcription is bidirectional

Jan 25, 2009

Genes that contain instructions for making proteins make up less than 2% of the human genome. Yet, for unknown reasons, most of our genome is transcribed into RNA. The same is true for many other organisms that are easier ...

Recommended for you

Chrono, the last piece of the circadian clock puzzle?

11 hours ago

All organisms, from mammals to fungi, have daily cycles controlled by a tightly regulated internal clock, called the circadian clock. The whole-body circadian clock, influenced by the exposure to light, dictates the wake-sleep ...

Drought hormones measured

11 hours ago

Floods and droughts are increasingly in the news, and climate experts say their frequency will only go up in the future. As such, it is crucial for scientists to learn more about how these extreme events affect plants in ...

Research traces the genetic print of the Asturian people

19 hours ago

The DNA of the people of Asturias still maintains the genetic prints of remote ages. A research conducted at the University of Oviedo proves that the old frontiers marked by the pre-Roman Astur settlements have left their ...

User comments : 0

More news stories

Patent talk: Google sharpens contact lens vision

(Phys.org) —A report from Patent Bolt brings us one step closer to what Google may have in mind in developing smart contact lenses. According to the discussion Google is interested in the concept of contact ...

Wireless industry makes anti-theft commitment

A trade group for wireless providers said Tuesday that the biggest mobile device manufacturers and carriers will soon put anti-theft tools on the gadgets to try to deter rampant smartphone theft.