Where's the debris for transiting planets?

Sep 06, 2011 By Jon Voisey, Universe Today

For many exoplanet systems that have been discovered by the radial velocity method, astronomers have found excess emission in the infrared portion of the spectrum. This has generally been interpreted as remnants of a disk or collection of objects similar to our own Kupier belt, a ring of icy bodies beyond the orbit of Pluto. But as Kepler and other exoplanet finding missions rake in the candidates though transits of the parent star, astronomers began noticing something unusual: None of the exoplanet systems discovered through this method were known to have debris disks. Was this an odd selection effect, perhaps induced by the fact that transiting planets often orbit close to their parent stars, making them more likely to pass along the line of sight which could in turn, betray different formation scenarios? Or were astronomers simply not looking hard enough? A recent paper by astronomers at the Astrophysikalisches Institut in Germany attempts to answer that question.

In order to do so, the team compared the (at the time) 93 known transiting to stars for which archival data was available through infrared missions such has IRAS, ISO, AKARI, and WISE. The team then searched the data looking for a previously unrecognized bump in the emission in the infrared. Many of the stars they searched were faint, due to distance, so most of the IR telescopes did not have images with sufficient depth to draw much in the way of conclusions. Between IRAS, ISO, Spitzer, and AKARI, the team was only able to examine three stars, and all of those came from Spitzer observations.

The most plentiful return came from the WISE telescope which had 53 entries that overlapped with known transiting systems, one of which was excluded due to image defects. From these 52 candidates, the team found four that may have contained excess emission. To follow up, the team added observations from other observatories that lied in the near infrared (the 2MASS survey) and the visual portion of the spectrum. This allowed them to build a more complete picture of the brightness of the stars at various wavelengths which would make the excess stand out even more. While all four systems deviated from an ideal blackbody in the portion of the spectrum expected for a debris disk, only two of them, TrES-2, and XO-5, did so in a manner that did so in a statistically significant manner.

While this study shows that debris disks are possible around transiting stars, it was only able to confirm their presence in two stars out of 52, or just under 4% of their sample. But how does that compare to systems discovered by other methods? One of the studies cited in the paper used a similar method of comparing archival data from IR observatories to known exoplanet system discovered by other methods in 2009. In this study, the team found debris disks around 10 of the 150 planet-bearing , which is roughly 7%. Due to the low return rate on both of these studies, the inherent uncertainty puts these two figures within a plausible range of one another, but certainly, more studies will be in order in the future. They will help astronomers determine just what difference exists, if any, as well as giving more insight into how planetary system form and evolve.

Explore further: Young binary star system may form planets with weird and wild orbits

add to favorites email to friend print save as pdf

Related Stories

Destroyer of worlds

Sep 24, 2010

(PhysOrg.com) -- Astronomers, in addition to discovering extrasolar planets (about 500 of them currently have known orbital parameters), have detected excess, warm infrared dust emission around many stars.

Making Jupiters

Aug 21, 2009

IC348 is a glowing nebula of young stars, hot gas, and cold dust seen in the direction of the constellation of Perseus. It is the nearest rich cluster of young stars to earth, being only about one thousand ...

Planets Living on the Edge

Dec 17, 2008

(PhysOrg.com) -- Some stars have it tough when it comes to raising planets. A new image from NASA's Spitzer Space Telescope shows one unlucky lot of stars, born into a dangerous neighborhood. The stars themselves ...

First four exoplanet systems imaged

Dec 13, 2010

Among one of the first exoplanet systems imaged was HR 8799. In 2008, a team led by Christian Marois at the Herzberg Institute of Astrophysics in Canada, took a picture of the system directly imaging three ...

Explained: Transiting exoplanets

Jan 27, 2011

In the quest to find life elsewhere in the universe, planetary scientists have detected more than 500 planets outside the solar system, or exoplanets, over the past 15 years. About one-fifth of those were ...

Recommended for you

Evidence of a local hot bubble carved by a supernova

16 hours ago

I spent this past weekend backpacking in Rocky Mountain National Park, where although the snow-swept peaks and the dangerously close wildlife were staggering, the night sky stood in triumph. Without a fire, ...

Astronomers measure weight of galaxies, expansion of universe

Jul 30, 2014

Astronomers at the University of British Columbia have collaborated with international researchers to calculate the precise mass of the Milky Way and Andromeda galaxies, dispelling the notion that the two galaxies have similar ...

Mysterious molecules in space

Jul 29, 2014

Over the vast, empty reaches of interstellar space, countless small molecules tumble quietly though the cold vacuum. Forged in the fusion furnaces of ancient stars and ejected into space when those stars ...

Comet Jacques makes a 'questionable' appearance

Jul 28, 2014

What an awesome photo! Italian amateur astronomer Rolando Ligustri nailed it earlier today using a remote telescope in New Mexico and wide-field 4-inch (106 mm) refractor. Currently the brightest comet in ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

Temple
not rated yet Sep 06, 2011
Due to the low return rate on both of these studies, the inherent uncertainty puts these two figures within a plausible range of one another, but certainly, more studies will be in order in the future.


That's an understatement.

52 stars is about 0.000000017% of the ~300B stars in our galaxy. 150 stars is about 0.00000005%.

That's a sample size that certainly doesn't warrant such a speculative title.

"Where's the debris for transiting planets?"

Well, we really have only *just* started looking, but so far it looks to be just where we expect it to be.