Generation of spin current by acoustic wave spin pumping

Sep 26, 2011 By Mikiko Tanifuji

Tohoku University, Japan Science and Technology Agency (JST) and Japan Atomic Energy Agency (JAEA) announced on August 22, 2011 that Kenichi Uchida, a PhD student, and Professor Eiji Saitoh of Tohoku University and their colleagues have succeeded in injecting spin current into a magnetic material by acoustic wave spin pumping.

This success was achieved under the support of JST and by the collaboration among Tohoku University, JAEA, and Technische Universitaet Kaiserslautern in Germany. Details are published in Nature Materials.

Heat generation associated with electronic charge current will be problematic in future high-density electronics. Spin , another entity of electron, is expected to carry information without heat generation. In contrast to existing methods of injecting spin current, such as , researchers have shown that , or phonons, can inject spin current by using a Ni81Fe19/Pt bilayer wire on an insulating sapphire plate. Under a temperature gradient in the sapphire, the voltage generated in the Pt layer was shown to reflect the wire position, although the wire was insulated both electrically and magnetically. This non-local voltage is attributed to the coupling of spins and phonons generated by the , since phonons are the only possible carrier of information.

This is a demonstration of generating spin current by directly injecting acoustic waves to realize spin pumping. Researchers suggest that this finding will open the door to acoustic spintronics, in which acoustic waves are exploited for making spin-based devices.

Explore further: The super-resolution revolution

More information: K. Uchida, et al., "Long-range spin Seebeck effect and acoustic spin pumping", Nature Materials (2011) doi:10.1038/nmat3099

Provided by National Institute for Materials Science

5 /5 (1 vote)
add to favorites email to friend print save as pdf

Related Stories

A remarkable step toward next-generation energy-conservation

Jun 29, 2011

Tohoku University, Osaka University and Japan Science and Technology Agency (JST) announced that they succeeded in directly observing electron spins in a topological insulator. The work has been published in Physical Review Le ...

Creating a pure spin current in graphene

Feb 07, 2011

(PhysOrg.com) -- Graphene is a material that has the potential for a number of future applications. Scientists are interested in using graphene for quantum computing and also as a replacement for electronics. However, in ...

Spin-polarized electrons on demand

Jan 21, 2009

Many hopes are pinned on spintronics. In the future it could replace electronics, which in the race to produce increasingly rapid computer components, must at sometime reach its limits. Different from electronics, where whole ...

Spin-polarized electrons on demand

Jan 15, 2009

Many hopes are pinned on spintronics. In the future it could replace electronics, which in the race to produce increasingly rapid computer components, must at sometime reach its limits. Different from electronics, where whole ...

Research reveals vital insight into spintronics

Jul 03, 2011

(PhysOrg.com) -- Progress in electronics has relied heavily on reducing the size of the transistor to create small, powerful computers. Now spintronics, hailed as the successor to the transistor, looks set ...

Recommended for you

New filter could advance terahertz data transmission

8 hours ago

University of Utah engineers have discovered a new approach for designing filters capable of separating different frequencies in the terahertz spectrum, the next generation of communications bandwidth that ...

The super-resolution revolution

8 hours ago

Cambridge scientists are part of a resolution revolution. Building powerful instruments that shatter the physical limits of optical microscopy, they are beginning to watch molecular processes as they happen, ...

A new X-ray microscope for nanoscale imaging

11 hours ago

Delivering the capability to image nanostructures and chemical reactions down to nanometer resolution requires a new class of x-ray microscope that can perform precision microscopy experiments using ultra-bright ...

Top-precision optical atomic clock starts ticking

Feb 26, 2015

A state-of-the-art optical atomic clock, collaboratively developed by scientists from the University of Warsaw, Jagiellonian University, and Nicolaus Copernicus University, is now "ticking away" at the National ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.