Crystal clear research

Sep 06, 2011

(PhysOrg.com) -- Scientists have successfully created synthetic crystals whose structures and properties mimic those of naturally occurring biominerals such as seashells.

The findings, published in the journal , could be an important step in the development of high-performance materials, which could be manufactured under environmentally-friendly conditions.

Biological minerals or 'biominerals' occur widely throughout nature in structures such as bones, teeth and seashells and frequently show remarkable shapes and properties compared with their synthetic counterparts.

A key feature of biominerals is that they are composite materials, made from an inorganic mineral such as which contains a small amount of organic material, usually a protein.

The resulting structures are incredibly hard and their mechanical properties can rival those of man-made materials such as ceramics, which are typically manufactured under and pressures, giving less opportunity for control over the material properties.

Scientists are interested in understanding how biology is able to perform such precision engineering in water at so they can apply this principle to the design and production of that are much greener than existing ones.

Now a team led by Professor Fiona Meldrum, from the University of Leeds School of Chemistry, has succeeded in creating artificial biominerals that exhibit similar properties to biominerals such as sea urchin spines.

They did this by growing calcite crystals in the presence of synthetic which act as . These nanoparticles are incorporated into the architecture of the crystal as it grows to create a .

The researchers also tested the mechanical properties of the composite material using a nanoindenter, a small chisel-like tool that can prod a material and record its response to a force.

Professor Meldrum said: "This method of creating synthetic biominerals gives us a unique insight into the structure of these incredible materials and the way the organic molecules are incorporated into the crystal structure at a microscopic level. We can then relate this microscopic structure to the mechanical properties of the material.

"What we found is that the artificial biomineral we have created is actually much harder than the pure calcite mineral because it is a composite material - where you add something soft to a hard substance to create something even harder than either of the constituent parts."

Co-author Professor Stephen Eichhorn, who has just moved to the University of Exeter from the University of Manchester, said: "Biological examples of calcium carbonate-based structures have a higher hardness than pure mineral without proteins present. It is remarkable that we have been able to achieve the same result using a synthetic 'pseudo' protein."

"When I began researching the mechanical properties of seashells at Manchester my first PhD student and I literally collected them with a bucket and spade on the beach. I didn't imagine that we would get to the stage of being able to measure similar properties for materials made in the lab."

The researchers will now try to replicate their technique using different minerals.

Explore further: Mirror-image forms of corannulene molecules could lead to exciting new possibilities in nanotechnology

More information: 'An artificial biomineral formed by incorporation of copolymer micelles in calcite crystals' by Yi-Yeoun Kim et al, is published in Nature Materials (available to subscribers here). 

Related Stories

Strength is shore thing for sea shell scientists

Mar 08, 2010

(PhysOrg.com) -- Scientists have made synthetic 'sea shells' from a mixture of chalk and polystyrene cups - and produced a tough new material that could make our homes and offices more durable.

Engineers 'bone' up on biological materials

May 07, 2008

In a recent feature article published in Materials Research Society's Bulletin, Dr Michelle Oyen explores the potential uses of synthetic bone-like material. Michelle suggests that these materials will be too ...

Modeling Mineral Formation with X-rays

Nov 30, 2006

Some of the hardest and sturdiest materials aren’t made in the factory; they’re made inside the bodies of animals. Biominerals are commonly used for support and protection, forming in teeth, bones, and ...

Muscle filaments make mechanical strain visible

Dec 20, 2010

Plastics-based materials have been in use for decades. But manufacturers are facing a serious hurdle in their quest for new developments: Substantial influences of the microscopic material structure on mechanical ...

Recommended for you

Tiny graphene drum could form future quantum memory

Aug 28, 2014

Scientists from TU Delft's Kavli Institute of Nanoscience have demonstrated that they can detect extremely small changes in position and forces on very small drums of graphene. Graphene drums have great potential ...

Graphene reinvents the future

Aug 27, 2014

For many scientists, the discovery of one-atom-thick sheets of graphene is hugely significant, something with the potential to affect just about every aspect of human activity and endeavour.

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

Isaacsname
not rated yet Sep 06, 2011
Compound calcite crystals with embedded synthetic nanoparticles...nice..they could make some interesting bifringent lenses in the future if they could grow compound crystals like that tailor-made.