Crystal structure shows how motor protein works

Sep 18, 2011

The crystal structure of the dynamin protein — one of the molecular machines that makes cells work — has been revealed, bringing insights into a class of molecules with a wide influence on health and disease.

"It's a really cool structure," said Jodi Nunnari, professor and chair of molecular and cellular biology at UC Davis and senior author of the paper, to be published Sept. 18 in the journal Nature. "This is a really important class of molecules for regulating membrane dynamics."

The detailed structure reveals exactly how the dynamin can form large assemblies that pinch off bubbles, or vesicles, from cell membranes. These vesicles allow a cell to "eat" proteins, liquids or other items from the outside, compartmentalize them and move them around within itself.

Marijn Ford, a postdoctoral scholar in Nunnari's laboratory, mapped the of dynamin-1 in collaboration with Simon Jenni, a research fellow at Harvard University.

Dynamin belongs to a large family of proteins that, in the right conditions, can self-assemble into larger structures and generate force. Those properties of self-assembly and movement can be harnessed in the cell for different functions.

Dynamin-1 itself is involved in making vesicles in nerve cells at the points where nerves form connections, or synapses, with each other. Nerve cells communicate through chemical messengers (neurotransmitters) that are released from and taken up by vesicles. Altering the balance of these messengers can affect mental function. For example, an important class of antidepressant drugs works by affecting the uptake of the neurotransmitter serotonin.

The new crystal structure shows exactly how the individual dynamin proteins can line up to form a helix, and then move by ratcheting alongside each other.

It also shows that part of the protein can interact with lipids in cell membranes. That could allow different types of dynamin protein to interact with subtly different types of membrane, specializing their function.

Understanding these miniature motors also might make it possible one day to engineer cells that can do new and different tasks, Nunnari said.

Explore further: Fungus deadly to AIDS patients found to grow on trees

Provided by University of California - Davis

5 /5 (2 votes)

Related Stories

The downside of microtubule stability

Jun 15, 2009

Stalled microtubules might be responsible for some cases of the neurological disorder Charcot-Marie-Tooth (CMT) disease, Tanabe and Takei report in the Journal of Cell Biology . A mutant protein makes the mi ...

New insight in how cells' powerhouse divides

Sep 02, 2011

New research from the University of California, Davis, and the University of Colorado at Boulder puts an unexpected twist on how mitochondria, the energy-generating structures within cells, divide. The work, ...

Researchers clock the speed of brain signals

Jun 22, 2011

Two studies featuring research from Weill Cornell Medical College have uncovered surprising details about the complex process that leads to the flow of neurotransmitters between brain neurons -- a dance of ...

Cells use import machinery to export their goods as well

Jul 03, 2009

(PhysOrg.com) -- In the bustling economy of the cell, little bubbles called vesicles serve as container ships, ferrying cargo to and from the port — the cell membrane. Some of these vesicles, called post-Golgi vesicles, ...

Recommended for you

How plant cell compartments change with cell growth

3 hours ago

A research team led by Kiminori Toyooka from the RIKEN Center for Sustainable Resource Science has developed a sophisticated microscopy technique that for the first time captures the detailed movement of ...

Plants can 'switch off' virus DNA

3 hours ago

A team of virologists and plant geneticists at Wageningen UR has demonstrated that when tomato plants contain Ty-1 resistance to the important Tomato yellow leaf curl virus (TYLCV), parts of the virus DNA ...

A better understanding of cell to cell communication

4 hours ago

Researchers of the ISREC Institute at the School of Life Sciences, EPFL, have deciphered the mechanism whereby some microRNAs are retained in the cell while others are secreted and delivered to neighboring ...

A glimpse at the rings that make cell division possible

4 hours ago

Forming like a blown smoke ring does, a "contractile ring" similar to a tiny muscle pinches yeast cells in two. The division of cells makes life possible, but the actual mechanics of this fundamental process ...

User comments : 0