Killing crop-eating pests: Compounds work by disrupting bugs' winter sleep

Sep 28, 2011

(PhysOrg.com) -- The creation of compounds that disrupt a worldwide pest's winter sleep hints at the potential to develop natural and targeted controls against crop-eating insects, new research suggests.

Scientists have designed agents that interfere with the protective dormancy period of the , a species that infests more than 100 types of plants and costs American farmers an estimated $2 billion a year in losses and control costs.

The compounds, composed of that mimic the structure of a hormone in these insects, have three different effects on diapause, a hibernation-like state of arrested development that allows many types of bugs to survive through the winter. The agents can force the insects out of diapause prematurely, prevent the bugs from ever entering diapause, or block the termination of diapause.

Any of these cases could be described as "ecological suicide," said David Denlinger, professor of and evolution, ecology and organismal biology at Ohio State University and senior author of the study.

"Diapause is such an important aspect of the life cycle," Denlinger said. "If we can do anything to disrupt the timing of that, make them go into diapause at the wrong time or break them out too early when there is no food available, that would be a pretty effective tool and a possible control strategy.

"And we now have tools that can do all three of those things to manipulate diapause."

The research is published online ahead of print in the .

The period of diapause in insects is controlled in part by the diapause hormone. In the corn earworm, Helicoverpa zea, and other , the hormone has been shown to break diapause, essentially waking up the bugs from their pupal state after they have been protectively burrowed underground during . In some other species, the diapause hormone initiates the instead.

Denlinger and colleagues investigated the structure of the hormone in these insects, and discovered that seven core amino acids do most of the work of terminating diapause. They then created chemical compounds based on the structure of that portion of the hormone and tested their effects on corn earworm larvae and pupae raised in a laboratory.

"By mimicking the structure of the amino acids, these compounds trick the body into responding as if the hormone is activated," said Qirui Zhang, a postdoctoral researcher in entomology and evolution, ecology and organismal biology at Ohio State and first author of the paper.

The researchers have narrowed the current crop of molecules down to three that appear to have the most potent effects at three different stages in the corn earworm's life. In at least one case, the science has improved on nature: The compound that terminates diapause prematurely is about 50 times more potent than an injection of the natural diapause hormone.

One other compound was so strong that it outright killed the larvae before there was any chance to disrupt their diapause state.

"That's not actually as interesting to us because we're looking at how to manipulate diapause," Denlinger said. "These agents wouldn't necessarily kill them right away, but interfering with diapause takes away their protection that gets them through adverse times and makes them vulnerable to environmental conditions."

Controlling these pests while they are larvae – which is when they do the most damage to plants – is desirable because once they pupate, they are underground and inaccessible, Denlinger noted.

But then again, terminating diapause early means pupae will die of exposure or starvation and won't have the chance to become adult moths that lay eggs and begin the all over again, he said.

In the experiments for this paper, the compounds were injected into the insects. Zhang is leading current experiments to deliver the agents orally in the bugs' food. Denlinger envisions the use of these compounds in some other form for insect control on a massive scale – perhaps by incorporating them into transgenic plants.

Current control measures for the corn earworm include insecticides and transgenic plants – primarily cotton, and not food crops – that contain a toxin that is deadly to the pest.

The research group will continue to work on refining the molecules and testing their effectiveness. "My guess is that these particular won't be the ones that solve the world's problems, but this points us in the direction that could lead to some next-generation control agents," Denlinger said.

Explore further: Stanford researchers rethink 'natural' habitat for wildlife

Related Stories

For many insects, winter survival is in the genes

May 30, 2007

Many insects living in northern climates don't die at the first signs of cold weather. Rather, new research suggests that they use a number of specialized proteins to survive the chilly months.

How insects survive the long, cold winter

Feb 04, 2011

Baby, it's cold outside. Time to put another log on the fire, wrap up in a thick sweater, or make a steaming mug of tea. These human adaptations to cold weather are quick, easy and get the job done. Even more ...

Recommended for you

Plants with dormant seeds give rise to more species

Apr 18, 2014

Seeds that sprout as soon as they're planted may be good news for a garden. But wild plants need to be more careful. In the wild, a plant whose seeds sprouted at the first warm spell or rainy day would risk disaster. More ...

Scientists tether lionfish to Cayman reefs

Apr 18, 2014

Research done by U.S. scientists in the Cayman Islands suggests that native predators can be trained to gobble up invasive lionfish that colonize regional reefs and voraciously prey on juvenile marine creatures.

User comments : 0

More news stories

Biologists help solve fungi mysteries

(Phys.org) —A new genetic analysis revealing the previously unknown biodiversity and distribution of thousands of fungi in North America might also reveal a previously underappreciated contributor to climate ...

Researchers successfully clone adult human stem cells

(Phys.org) —An international team of researchers, led by Robert Lanza, of Advanced Cell Technology, has announced that they have performed the first successful cloning of adult human skin cells into stem ...

NASA's space station Robonaut finally getting legs

Robonaut, the first out-of-this-world humanoid, is finally getting its space legs. For three years, Robonaut has had to manage from the waist up. This new pair of legs means the experimental robot—now stuck ...

Ex-Apple chief plans mobile phone for India

Former Apple chief executive John Sculley, whose marketing skills helped bring the personal computer to desktops worldwide, says he plans to launch a mobile phone in India to exploit its still largely untapped ...

Filipino tests negative for Middle East virus

A Filipino nurse who tested positive for the Middle East virus has been found free of infection in a subsequent examination after he returned home, Philippine health officials said Saturday.

Egypt archaeologists find ancient writer's tomb

Egypt's minister of antiquities says a team of Spanish archaeologists has discovered two tombs in the southern part of the country, one of them belonging to a writer and containing a trove of artifacts including reed pens ...

Airbnb rental site raises $450 mn

Online lodging listings website Airbnb inked a $450 million funding deal with investors led by TPG, a source close to the matter said Friday.