Compound kills highly contagious flu strain by activating antiviral protein

Sep 26, 2011

A compound tested by UT Southwestern Medical Center investigators destroys several viruses, including the deadly Spanish flu that killed an estimated 30 million people in the worldwide pandemic of 1918.

This lead compound - which acts by increasing the levels of a human antiviral protein - could potentially be developed into a new drug to combat the flu, a virus that tends to mutate into strains resistant to anti-influenza drugs.

"The virus is 'smart' enough to bypass inhibitors or vaccines sometimes. Therefore, there is a need for alternative strategies. Current drugs act on the virus, but here we are uplifting a host/human antiviral response at the cellular level," said Dr. Beatriz Fontoura, associate professor of cell biology and senior author of the study available online in Nature Chemical Biology.

According to National Institutes of Health, influenza hospitalizes more than 200,000 people in the U.S. each year, with about 36,000 fatalities related to the illness. Worldwide, flu kills about 500,000 people annually.

In the latest cell testing, the compound successfully knocked out three types of influenza as well as a smallpox-related virus and an animal virus. Because of the highly contagious nature of the 1918 flu, those tests took place at Mount Sinai School of Medicine in New York, one of the few places that stores and runs tests on that .

The compound is among others that the research team is testing that induce an infection-fighting called REDD1. Until this study, researchers had not demonstrated that REDD1 had this important antiviral function.

"We've discovered that REDD1 is a key human barrier for infection," said Dr. Fontoura, "Interestingly, REDD1 inhibits a signaling pathway that regulates and cancer."

The UT Southwestern-led research team tested 200,000 compounds for those that would inhibit infection. A total of 71 were identified.

Using the two most promising compounds, researchers at UT Southwestern and colleagues at Mount Sinai next will work to strengthen their potencies for further testing. Dr. Fontoura said it can take more than 10 years before successful compounds are developed into drugs.

Explore further: Chemical biologists find new halogenation enzyme

Related Stories

Seattle school to study 1918 flu virus

Jan 17, 2006

University of Washington scientists will use monkeys to study genes preserved from the deadly 1918 influenza virus that killed more than 50 million people.

Recommended for you

Chemical biologists find new halogenation enzyme

8 hours ago

Molecules containing carbon-halogen bonds are produced naturally across all kingdoms of life and constitute a large family of natural products with a broad range of biological activities. The presence of halogen substituents ...

Protein secrets of Ebola virus

13 hours ago

The current Ebola virus outbreak in West Africa, which has claimed more than 2000 lives, has highlighted the need for a deeper understanding of the molecular biology of the virus that could be critical in ...

Protein courtship revealed through chemist's lens

13 hours ago

Staying clear of diseases requires that the proteins in our cells cooperate with one another. But, it has been a well-guarded secret how tens of thousands of different proteins find the correct dancing partners ...

Decoding 'sweet codes' that determine protein fates

15 hours ago

We often experience difficulties in identifying the accurate shape of dynamic and fluctuating objects. This is especially the case in the nanoscale world of biomolecules. The research group lead by Professor Koichi Kato of ...

Conjecture on the lateral growth of Type I collagen fibrils

Sep 12, 2014

Whatever the origin and condition of extraction of type I collagen fibrils, in vitro as well as in vivo, the radii of their circular circular cross sections stay distributed in a range going from 50 to 100 nm for the most ...

User comments : 0