Cheap and efficient solar cell made possible by linked nanoparticles

Sep 26, 2011

Researchers of the Chemical Engineering department and the Kavli institute of Delft University of Technology in the Netherlands have demonstrated that electrons can move freely in layers of linked semiconductor nanoparticles under the influence of light. This new knowledge will be very useful for the development of cheap and efficient quantum dot solar cells. The researchers published their findings on Sunday 25 September on the website of the scientific journal Nature Nanotechnology.

The current solar panels are expensive to produce. Cheaper are available, but these are inefficient. For example, an organic solar cell has a of 8%. One way of increasing the efficiency of cheap solar cells is the use of , . In theory, the efficiency of these cells can be increased to 44%. This is in part due to the avalanche effect, demonstrated by researchers from TU Delft and the FOM Foundation in 2008. In the current solar cells, an absorbed light particle can only excite one electron (creating an electron-hole pair), while in a quantum dot solar cell a light particle can excite several electrons. The more electrons that are excited, the greater the efficiency of the solar cell.

Up to now, the creation of electron-hole pairs under the influence of light was only demonstrated within the limits of a quantum dot. To be usable in solar cells, it is essential that electrons and holes are able to move. This is what creates an electrical current that can be collected at an electrode. Researchers from the same research group have now demonstrated that the electron-hole pairs can also move as free charges between the nanoparticles. To this end they linked nanoparticles together, using very small molecules, so that they were very densely clustered while still remaining separate from each other. The nanoparticles are so close together that every single light particle that is absorbed by the solar cell actually causes electrons to move.

Explore further: Scientists come closer to the industrial synthesis of a material harder than diamond

add to favorites email to friend print save as pdf

Related Stories

Greatly Improved Solar Cells

Apr 21, 2004

Victor Klimov and Richard Schaller at Los Alamos National Laboratory have enhanced the phenomenon called "impact ionization," which can significantly improve the efficiency of the conversion of solar energy to ...

Quantum Dots Could Boost Solar Cell Efficiency

Mar 11, 2009

(PhysOrg.com) -- The transition to environmentally benign energy sources is one of the most significant challenges of the 21st century. Solar power, which uses sunlight to generate electricity, is one promising source. It ...

Hot Electrons Could Double Solar Cell Power Efficiency

Dec 18, 2009

Scientists have experimentally verified a theory suggesting that hot electrons could double the output of solar cells. The researchers, from Boston College, have built solar cells that successfully use hot ...

Recommended for you

'Small' transformation yields big changes

Sep 15, 2014

An interdisciplinary team of researchers led by Northeastern University has developed a novel method for controllably constructing precise inter-nanotube junctions and a variety of nanocarbon structures in ...

Aligned carbon nanotube / graphene sandwiches

Sep 12, 2014

By in situ nitrogen doping and structural hybridization of carbon nanotubes (CNTs) and graphene via a two-step chemical vapor deposition (CVD), scientists have fabricated nitrogen-doped aligned carbon nanotu ...

User comments : 0