Biodiversity helps dilute infectious disease, reduce its severity

Sep 19, 2011
Research has shown that amphibians, such as this Western toad that was the focus of a recent study, can better resist disease in more diverse ecosystems. (Photo by Ivan Phillipsen, courtesy of Oregon State University)

Researchers at Oregon State University have shown for the first time that loss of biodiversity may be contributing to a fungal infection that is killing amphibians around the world, and provides more evidence for why biodiversity is important to many ecosystems.

The findings, being published this week in , used laboratory studies of amphibians to show that increased decreased both the prevalence and severity of infection caused by the deadly , Batrachochytrium dendrobatidis.

"With greater diversity of species, you get a dilution effect that can reduce the severity of disease," said Catherine Searle, an OSU zoologist and lead author on the study. "Some species are poor hosts, some may not get infected at all, and this tends to slow .

"This has been shown in other systems like which infects humans, mice and deer," she said. "No one has really considered the dilution effect much in amphibians, which are experiencing throughout the world. It's an underappreciated value of biodiversity."

It's generally accepted, the researchers said, that a high diversity of species can protect ecosystem function, help to recycle nutrients, filter air and water, and also protect the storehouse of plant or animal species that may form the basis of medicines, compounds or natural products of value to humans.

Protection against the spread of disease should more often be added to that list, they said.

" are on the rise in many ecosystems," said Andrew Blaustein, a co-author on this study, professor of zoology at OSU and leading researcher on the causes of .

"Protection of biodiversity may help reduce diseases," he said. "It's another strong argument for why diverse ecosystems are so important in general. And it's very clear that biodiversity is much easier to protect than it is to restore, once it's lost."

The fungus, B. dendrobatidis, can lead to death from cardiac arrest when it reaches high levels in its amphibian hosts. It is not always fatal at lower levels of infection, but is now causing problems around the world. One research team has called the impact of the chytrid fungus on amphibians "the most spectacular loss of vertebrate biodiversity due to disease in recorded history."

Amphibians face threats from multiple causes, including habitat destruction, pollution, increases in ultraviolet light due to ozone depletion, invasive species, and infectious disease.

The dilution effect can occur in plants and animals, but also in human diseases. In a different report published last year in Nature, researchers noted an increased risk of West Nile encephalitis in the U.S. in areas with low bird diversity. And in more diverse communities, the infection of humans by schistosomiasis – which infects 200 million people worldwide – can be reduced by 25-99 percent.

Explore further: Dwindling wind may tip predator-prey balance

Related Stories

Recommended for you

Dwindling wind may tip predator-prey balance

Sep 19, 2014

Bent and tossed by the wind, a field of soybean plants presents a challenge for an Asian lady beetle on the hunt for aphids. But what if the air—and the soybeans—were still?

Asian stars enlisted to fight African rhino poaching

Sep 19, 2014

Increasingly desperate South African conversationists are turning to a multi-national team of "rhino ambassadors" to try to end the scourge of poaching—and Vietnamese pop diva Hong Nhung has been recruited ...

Tropical fish a threat to Mediterranean Sea ecosystems

Sep 18, 2014

The tropical rabbitfish which have devastated algal forests in the eastern Mediterranean Sea pose a major threat to the entire Mediterranean basin if their distribution continues to expand as the climate ...

User comments : 0