Antibacterial effect of phenolic compounds from peat moss and the polysaccharide chitosan

Sep 15, 2011

The polysaccharide (sugar substance) chitosan has a documented antibacterial effect. Hilde Mellegard's doctoral research shows that this antibacterial activity varies according to the chemical composition of the chitosan.

Her work demonstrates how chitosan can impede the growth of different kinds of bacteria - including bacteria that cause - and provides new insight into the way the substance works. However, the study also shows that from peat moss have little potential as bacteriostatic agents.

Chitosan is commercially extracted from the of and is used as a preservative in foods in several countries, but not in Norway up until now. Even though its ability to inhibit bacterial development has already been described, there are few studies related to chitosan's different chemical characteristics.

By means of her study, Hilde Mellegard discovered that the different chemical characteristics of chitosan are of decisive importance when it comes to the degree of their antibacterial effect. Her research also shows that the growth of activated spores of the , which causes food poisoning, could be inhibited by applying different types of chitosans. The substance may therefore have potential as an additive to foodstuffs, with a view to preventing the growth of B. cereus .

There are few studies of how the chitosans actually affect bacteria, especially on a molecular level. Mellegård demonstrates that when cells of the B. cereus are exposed to chitosan, they become more permeable (i.e. potassium leaks out of them), compared to unexposed cells. In addition, genetic studies show that a pumping system that transports potassium into the cells is activated in cells exposed to chitosan, which may constitute a counter reaction to the leakage of potassium from the cells.

Phenolic compounds have been shown to have a bactericidal effect in several different contexts. Mellegård has identified phenolic compounds in peat moss, Sphagnum papillosum, which is the most common peat-forming plant in Northern Europe. However, these phenolic compounds only slightly inhibited the growth of several bacteria causing food poisoning and therefore probably only have a small potential as bacteriostatic food additives.

Mellegard's doctoral research was carried out at The Norwegian School of Veterinary Science and also during periods of study at the University of Groningen in the Netherlands. In addition, researchers at The Norwegian University of Science and Technology in Trondheim were key collaborators.

Cand.med.vet. Hilde Mellegard defended her doctoral thesis on 9th September at The Norwegian School of Veterinary Science. The thesis is entitled: “ of phenolic compounds from Sphagnum papillosum and the polysaccharide chitosan”.

Explore further: Hot-spring bacteria reveal ability to use far-red light for photosynthesis

add to favorites email to friend print save as pdf

Related Stories

First evidence that chitosan could repair spinal damage

Apr 16, 2010

Spinal injuries are some of the most debilitating that anyone can suffer. However, Richard Borgens and his team from the Center for Paralysis Research at the Purdue School of Veterinary Medicine can now offer spinal cord ...

Vibrio bacteria found in Norwegian seafood and seawater

Feb 24, 2009

(PhysOrg.com) -- While working on her doctorate, Anette Bauer Ellingsen discovered potentially disease-causing vibrios (Vibrio cholerae, V. parahaemolyticus and V. vulnificus) in Norwegian seafood and inshore ...

Recommended for you

How plant cell compartments change with cell growth

8 hours ago

A research team led by Kiminori Toyooka from the RIKEN Center for Sustainable Resource Science has developed a sophisticated microscopy technique that for the first time captures the detailed movement of ...

Plants can 'switch off' virus DNA

8 hours ago

A team of virologists and plant geneticists at Wageningen UR has demonstrated that when tomato plants contain Ty-1 resistance to the important Tomato yellow leaf curl virus (TYLCV), parts of the virus DNA ...

A better understanding of cell to cell communication

9 hours ago

Researchers of the ISREC Institute at the School of Life Sciences, EPFL, have deciphered the mechanism whereby some microRNAs are retained in the cell while others are secreted and delivered to neighboring ...

A glimpse at the rings that make cell division possible

9 hours ago

Forming like a blown smoke ring does, a "contractile ring" similar to a tiny muscle pinches yeast cells in two. The division of cells makes life possible, but the actual mechanics of this fundamental process ...

User comments : 0