Antibacterial effect of phenolic compounds from peat moss and the polysaccharide chitosan

Sep 15, 2011

The polysaccharide (sugar substance) chitosan has a documented antibacterial effect. Hilde Mellegard's doctoral research shows that this antibacterial activity varies according to the chemical composition of the chitosan.

Her work demonstrates how chitosan can impede the growth of different kinds of bacteria - including bacteria that cause - and provides new insight into the way the substance works. However, the study also shows that from peat moss have little potential as bacteriostatic agents.

Chitosan is commercially extracted from the of and is used as a preservative in foods in several countries, but not in Norway up until now. Even though its ability to inhibit bacterial development has already been described, there are few studies related to chitosan's different chemical characteristics.

By means of her study, Hilde Mellegard discovered that the different chemical characteristics of chitosan are of decisive importance when it comes to the degree of their antibacterial effect. Her research also shows that the growth of activated spores of the , which causes food poisoning, could be inhibited by applying different types of chitosans. The substance may therefore have potential as an additive to foodstuffs, with a view to preventing the growth of B. cereus .

There are few studies of how the chitosans actually affect bacteria, especially on a molecular level. Mellegård demonstrates that when cells of the B. cereus are exposed to chitosan, they become more permeable (i.e. potassium leaks out of them), compared to unexposed cells. In addition, genetic studies show that a pumping system that transports potassium into the cells is activated in cells exposed to chitosan, which may constitute a counter reaction to the leakage of potassium from the cells.

Phenolic compounds have been shown to have a bactericidal effect in several different contexts. Mellegård has identified phenolic compounds in peat moss, Sphagnum papillosum, which is the most common peat-forming plant in Northern Europe. However, these phenolic compounds only slightly inhibited the growth of several bacteria causing food poisoning and therefore probably only have a small potential as bacteriostatic food additives.

Mellegard's doctoral research was carried out at The Norwegian School of Veterinary Science and also during periods of study at the University of Groningen in the Netherlands. In addition, researchers at The Norwegian University of Science and Technology in Trondheim were key collaborators.

Cand.med.vet. Hilde Mellegard defended her doctoral thesis on 9th September at The Norwegian School of Veterinary Science. The thesis is entitled: “ of phenolic compounds from Sphagnum papillosum and the polysaccharide chitosan”.

Explore further: The malaria pathogen's cellular skeleton under a super-microscope

add to favorites email to friend print save as pdf

Related Stories

First evidence that chitosan could repair spinal damage

Apr 16, 2010

Spinal injuries are some of the most debilitating that anyone can suffer. However, Richard Borgens and his team from the Center for Paralysis Research at the Purdue School of Veterinary Medicine can now offer spinal cord ...

Vibrio bacteria found in Norwegian seafood and seawater

Feb 24, 2009

(PhysOrg.com) -- While working on her doctorate, Anette Bauer Ellingsen discovered potentially disease-causing vibrios (Vibrio cholerae, V. parahaemolyticus and V. vulnificus) in Norwegian seafood and inshore ...

Recommended for you

For resetting circadian rhythms, neural cooperation is key

18 hours ago

Fruit flies are pretty predictable when it comes to scheduling their days, with peaks of activity at dawn and dusk and rest times in between. Now, researchers reporting in the Cell Press journal Cell Reports on April 17th h ...

Rapid and accurate mRNA detection in plant tissues

19 hours ago

Gene expression is the process whereby the genetic information of DNA is used to manufacture functional products, such as proteins, which have numerous different functions in living organisms. Messenger RNA (mRNA) serves ...

For cells, internal stress leads to unique shapes

Apr 16, 2014

From far away, the top of a leaf looks like one seamless surface; however, up close, that smooth exterior is actually made up of a patchwork of cells in a variety of shapes and sizes. Interested in how these ...

User comments : 0

More news stories

Scientists tether lionfish to Cayman reefs

Research done by U.S. scientists in the Cayman Islands suggests that native predators can be trained to gobble up invasive lionfish that colonize regional reefs and voraciously prey on juvenile marine creatures.

Deadly human pathogen Cryptococcus fully sequenced

Within each strand of DNA lies the blueprint for building an organism, along with the keys to its evolution and survival. These genetic instructions can give valuable insight into why pathogens like Cryptococcus ne ...

Leeches help save woman's ear after pit bull mauling

(HealthDay)—A pit bull attack in July 2013 left a 19-year-old woman with her left ear ripped from her head, leaving an open wound. After preserving the ear, the surgical team started with a reconnection ...

Venture investments jump to $9.5B in 1Q

Funding for U.S. startup companies soared 57 percent in the first quarter to a level not seen since 2001, as venture capitalists piled more money into an increasing number of deals, according to a report due out Friday.