Making tomorrow's bioenergy yeasts strong

Aug 25, 2011

Cornstalks, wheat straw, and other rough, fibrous, harvest-time leftovers may soon be less expensive to convert into cellulosic ethanol, thanks to U.S. Department of Agriculture (USDA) scientists' studies of a promising new biorefinery yeast.

The yeast-Saccharomyces cerevisiae strain NRRL Y-50049-successfully ferments into cellulosic ethanol despite the stressful interference by problematic compounds such as furfural (2-furaldehyde) and HMF (5-hydroxymethyl-2-furaldehyde) in fermenters, according to molecular biologist Zonglin Lewis Liu with USDA's Agricultural Research Service (ARS). Liu works at ARS' National Center for Agricultural Utilization Research in Peoria, Ill.

ARS is USDA's principal intramural scientific research agency. Liu's research supports the USDA priority of developing new sources of bioenergy.

The troublesome compounds, created during dilute acid pre-treatment of the crop leftovers, inhibit growth and reduce ethanol yields. In particular, they damage yeast cell walls and membranes, disrupt yeast such as DNA and RNA, and interfere with yeast enzymes' fermentation abilities.

In research that began in 2003, Liu and coinvestigators have worked with dozens of strains of S. cerevisiae, a species already used to make ethanol from plant starch. Using a laboratory approach known as "evolutionary engineering," the scientists speeded up the microbe's natural adaptation to the hostile environment created by the inhibitors. NRRL Y-50049 was one result of these studies.

The scientists are discovering more about the genes and the multiple networks of genes that are likely responsible for the notable tolerance that this yeast has shown in laboratory tests with a 2-liter fermenter.

Their research suggests that, of the nearly 7,000 genes in the S. cerevisiae genome, more than 350 may be involved in counteracting stress. For instance, Liu and colleagues determined that a gene called YAP1 acts as a , orchestrating interactions of many related , so that they work together to reduce the impact of furfural and HMF.

Explore further: Improving the productivity of tropical potato cultivation

More information: Peer-reviewed articles in Applied Microbiology and Biotechnology, Molecular Genetics and Genomics, and other scientific journals document the studies.

Provided by United States Department of Agriculture

not rated yet
add to favorites email to friend print save as pdf

Related Stories

Wine-making yeast shows promise for bioethanol production

May 13, 2010

Researchers from the Stanford University School of Medicine have identified a gene in the yeast Saccharomyces cerevisiae that might be important for ethanol production from plant material, providing insights into the bioeth ...

Recommended for you

Building better soybeans for a hot, dry, hungry world

16 hours ago

(Phys.org) —A new study shows that soybean plants can be redesigned to increase crop yields while requiring less water and helping to offset greenhouse gas warming. The study is the first to demonstrate ...

Gene removal could have implications beyond plant science

17 hours ago

(Phys.org) —For thousands of years humans have been tinkering with plant genetics, even when they didn't realize that is what they were doing, in an effort to make stronger, healthier crops that endured climates better, ...

Chrono, the last piece of the circadian clock puzzle?

Apr 15, 2014

All organisms, from mammals to fungi, have daily cycles controlled by a tightly regulated internal clock, called the circadian clock. The whole-body circadian clock, influenced by the exposure to light, dictates the wake-sleep ...

User comments : 0

More news stories

Revealing camouflaged bacteria

A research team at the Biozentrum of the University of Basel has discovered an protein family that plays a central role in the fight against the bacterial pathogen Salmonella within the cells. The so cal ...

Chimpanzees prefer firm, stable beds

Chimpanzees may select a certain type of wood, Ugandan Ironwood, over other options for its firm, stable, and resilient properties to make their bed, according to a study published April 16, 2014 in the open-access ...