Research team achieves first 2-color STED microscopy of living cells

Aug 17, 2011

Researchers are able to achieve extremely high-resolution microscopy through a process known as stimulated emission depletion (STED) microscopy. This cutting-edge imaging system has pushed the performance of microscopes significantly past the classical limit, enabling them to image features that are even smaller than the wavelength of light used to study them. They are able to achieve this extreme vision by using a single-color fluorescent dye that absorbs and releases energy, revealing cells and cellular components (such as proteins) in unprecedented detail.

Current applications of STED microscopy have been limited to single color imaging of living cells and multicolor imaging in "fixed" or preserved cells. However, to study active processes, such as protein interactions, a two-color STED imaging technique is needed in living cells. This was achieved for the first time by a team of researchers from Yale University, as reported in the August issue of the Optical Society's (OSA) open-access journal Express.

The key to their success was in overcoming the challenges in labeling in living cells with dyes optimal for two-color STED microscopy. By incorporating , the researchers were able to improve the targeting between the protein and the dye, effectively bridging the gap. This allowed the researchers to achieve resolutions of 78 nanometers and 82 nanometers for 22 sequential two-color scans of two proteins—epidermal growth factor and epidermal growth factor receptor—in living cells.

The researchers expect that using this and other novel approaches will expand live cell STED microscopy to three and more colors, enabling 3-D imaging.

Explore further: Trapping and watching motile cells

More information: Paper: "Two-color STED microscopy in living cells," Biomedical Optics Express, Pellett et al., Volume 2, Issue 8, pp. 2364-2371. www.opticsinfobase.org/boe/abs… cfm?URI=boe-2-8-2364

Related Stories

Physicist builds advanced microscope

Jul 21, 2011

Stephanie Meyer, a physicist specializing in optics, is bringing new capabilities to the University of Colorado Denver Anschutz Medical Campus by building an advanced, super resolution microscope able to see some of the innermost ...

Recommended for you

Soft, energy-efficient robotic wings

16 hours ago

Dielectric elastomers are novel materials for making actuators or motors with soft and lightweight properties that can undergo large active deformations with high-energy conversion efficiencies. This has ...

Trapping and watching motile cells

20 hours ago

A new approach enables rapid characterization of living suspension cells in 4 dimensions while they are immobilized and manipulated within optical traps.

Controlling defects in engineered liquid crystals

20 hours ago

Sitting with a joystick in the comfort of their chairs, scientists can play "rodeo" on a screen magnifying what is happening under their microscope. They rely on optical tweezers to manipulate an intangible ring created out ...

Super sensitive measurement of magnetic fields

Mar 30, 2015

There are electrical signals in the nervous system, the brain and throughout the human body and there are tiny magnetic fields associated with these signals that could be important for medical science. Researchers ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.