1 species of pathogen can produce 2 distinct biofilms

Aug 02, 2011

Many medical devices, ranging from artificial hip joints to dentures and catheters, can come with unwelcome guests – complex communities of microbial pathogens called biofilms that are resistant to the human immune system and antibiotics, thus proving a serious threat to human health. However, researchers may have a new way of looking at biofilms, thanks to a study conducted by University of Iowa biologist David Soll and his colleagues published in the Aug 2 issue of the online, open access journal PLoS Biology.

Previously, researchers believed that each pathogen formed one kind of biofilm, but Soll and his colleagues have discovered that the pernicious fungal pathogen Candida albicans makes two kinds of biofilms; a traditional pathogenic one, and a second sexual one. This discovery provides new and profound insights into developing new therapies that target pathogenic biofilms for disruption.

Soll and his colleagues showed for the first time that the majority – about 90 percent – of colonizing humans make a pathogenic biofilm that cannot be penetrated by antifungal agents, antibodies or white blood cells. These majority cells are sexually incompetent. But a minority – about 10 percent – of cells, which are sexually competent, form highly permeable and penetrable biofilms, which Soll and his colleagues have shown act as a supportive environment for mating. They demonstrate that although the pathogenic and sexual biofilms appear macroscopically similar, they are regulated by entirely different signalling pathways.

"Having two outwardly similar, but functionally different, biofilms provides us with one means of finding out what makes the pathogenic biofilm resistant to all challenges, and the sexual biofilm non-resistant," Soll said. "Whatever that difference is will represent a major target for future drug discovery."

Explore further: Team publishes evidence for natural alternative to antibiotic use in livestock

More information: Yi S, Sahni N, Daniels KJ, Lu KL, Srikantha T, et al. (2011) Alternative Mating Type Configurations (a/a versus a/a or a/a) of Candida albicans Result in Alternative Biofilms Regulated by Different Pathways. PLoS Biol 9(8): e1001117. doi:10.1371/journal.pbio.1001117

Related Stories

Fighting fungal infections with bacteria

May 01, 2010

A bacterial pathogen can communicate with yeast to block the development of drug-resistant yeast infections, say Irish scientists writing in the May issue of Microbiology. The research could be a step toward ...

Researchers discover new ways to treat chronic infections

Dec 18, 2009

Researchers at Binghamton University, State University of New York, have identified three key regulators required for the formation and development of biofilms. The discovery could lead to new ways of treating ...

Recommended for you

Researchers capture picture of microRNA in action

Oct 30, 2014

Biologists at The Scripps Research Institute (TSRI) have described the atomic-level workings of "microRNA" molecules, which control the expression of genes in all animals and plants.

Blocking a fork in the road to DNA replication

Oct 30, 2014

A team of Whitehead Institute scientists has discovered the surprising manner in which an enigmatic protein known as SUUR acts to control gene copy number during DNA replication. It's a finding that could shed new light on ...

Cell division, minus the cells

Oct 30, 2014

(Phys.org) —The process of cell division is central to life. The last stage, when two daughter cells split from each other, has fascinated scientists since the dawn of cell biology in the Victorian era. ...

A new method simplifies the analysis of RNA structure

Oct 30, 2014

To understand the function of an RNA molecule, similar to the better-known DNA and vital for cell metabolism, we need to know its three-dimensional structure. Unfortunately, establishing the shape of an RNA ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.