1 species of pathogen can produce 2 distinct biofilms

Aug 02, 2011

Many medical devices, ranging from artificial hip joints to dentures and catheters, can come with unwelcome guests – complex communities of microbial pathogens called biofilms that are resistant to the human immune system and antibiotics, thus proving a serious threat to human health. However, researchers may have a new way of looking at biofilms, thanks to a study conducted by University of Iowa biologist David Soll and his colleagues published in the Aug 2 issue of the online, open access journal PLoS Biology.

Previously, researchers believed that each pathogen formed one kind of biofilm, but Soll and his colleagues have discovered that the pernicious fungal pathogen Candida albicans makes two kinds of biofilms; a traditional pathogenic one, and a second sexual one. This discovery provides new and profound insights into developing new therapies that target pathogenic biofilms for disruption.

Soll and his colleagues showed for the first time that the majority – about 90 percent – of colonizing humans make a pathogenic biofilm that cannot be penetrated by antifungal agents, antibodies or white blood cells. These majority cells are sexually incompetent. But a minority – about 10 percent – of cells, which are sexually competent, form highly permeable and penetrable biofilms, which Soll and his colleagues have shown act as a supportive environment for mating. They demonstrate that although the pathogenic and sexual biofilms appear macroscopically similar, they are regulated by entirely different signalling pathways.

"Having two outwardly similar, but functionally different, biofilms provides us with one means of finding out what makes the pathogenic biofilm resistant to all challenges, and the sexual biofilm non-resistant," Soll said. "Whatever that difference is will represent a major target for future drug discovery."

Explore further: Fighting bacteria—with viruses

More information: Yi S, Sahni N, Daniels KJ, Lu KL, Srikantha T, et al. (2011) Alternative Mating Type Configurations (a/a versus a/a or a/a) of Candida albicans Result in Alternative Biofilms Regulated by Different Pathways. PLoS Biol 9(8): e1001117. doi:10.1371/journal.pbio.1001117

Related Stories

Fighting fungal infections with bacteria

May 01, 2010

A bacterial pathogen can communicate with yeast to block the development of drug-resistant yeast infections, say Irish scientists writing in the May issue of Microbiology. The research could be a step toward ...

Researchers discover new ways to treat chronic infections

Dec 18, 2009

Researchers at Binghamton University, State University of New York, have identified three key regulators required for the formation and development of biofilms. The discovery could lead to new ways of treating ...

Recommended for you

Fighting bacteria—with viruses

Jul 24, 2014

Research published today in PLOS Pathogens reveals how viruses called bacteriophages destroy the bacterium Clostridium difficile (C. diff), which is becoming a serious problem in hospitals and healthcare institutes, due to its re ...

Atomic structure of key muscle component revealed

Jul 24, 2014

Actin is the most abundant protein in the body, and when you look more closely at its fundamental role in life, it's easy to see why. It is the basis of most movement in the body, and all cells and components ...

Brand new technology detects probiotic organisms in food

Jul 23, 2014

In the food industr, ity is very important to ensure the quality and safety of products consumed by the population to improve their properties and reduce foodborne illness. Therefore, a team of Mexican researchers ...

Protein evolution follows a modular principle

Jul 23, 2014

Proteins impart shape and stability to cells, drive metabolic processes and transmit signals. To perform these manifold tasks, they fold into complex three-dimensional shapes. Scientists at the Max Planck ...

Report on viruses looks beyond disease

Jul 22, 2014

In contrast to their negative reputation as disease causing agents, some viruses can perform crucial biological and evolutionary functions that help to shape the world we live in today, according to a new report by the American ...

User comments : 0