New sensors streamline detection of estrogenic compounds

Aug 25, 2011

Researchers have engineered new sensors that fluoresce in the presence of compounds that interact with estrogen receptors in human cells. The sensors detect natural or human-made substances that alter estrogenic signaling in the body.

The study appears in the journal Biotechnology and Bioengineering.

Estrogen occurs naturally in the body (in the form of 17-beta-estradiol), and a variety of plants (such as soybeans), pharmaceuticals, microbial and (such as bisphenol A, in plastics) are also known to activate or block the activation of estrogen receptors in .

"There are so many estrogenic compounds in our environment, and some of them could be a danger to health," said University of Illinois chemical and biomolecular engineering professor Huimin Zhao, who led the research. Zhao also is an affiliate of the chemistry and biochemistry departments, the Center for Biophysics and , and the Institute for Genomic Biology, all at Illinois. "We are concerned about estrogenic compounds because they interact with the estrogen receptor, which plays an important role in many important biological processes, like reproduction, , and metabolism."

The estrogen receptor is also implicated in a majority of breast cancers, he said, with compounds that activate it potentially spurring the growth of .

The researchers used part of the itself in the design of their new sensors. They took the region of the receptor that binds to estrogenic compounds (called the "ligand-binding domain) and added two halves of a fluorescent protein that glows only when the halves are reunited. The ligand-binding domain changes its conformation when it binds to an estrogenic compound. This change, the researchers hoped, would draw the two parts of the fluorescent protein together to produce a signal.

In a series of trials, the researchers found that two of their sensors reliably signaled the presence of estrogenic compounds. The first, "sensor 2," differentiated between compounds that activate and those that block estrogen receptors, glowing more brightly in the presence of one and dimming when bound to the other. A second bioengineered molecule, "sensor 6," fluoresced in the presence of both types of compounds, making it a reliable indicator of chemicals that bind to the receptor.

When incubated in human cells, the sensors responded to estrogenic compounds within a few hours, Zhao said, with the fluorescent signals gradually increasing in strength up to 24 hours. "And also the sensitivity is pretty high," he said. "Of course it depends on the compound that you're testing; different compounds will have different affinities. But for a truly estrogenic compound, we can detect at the nanomolar level, a very low level."

These are the first such sensors to work in human cells without costly additional chemical steps, he said.

The new sensors will help researchers and clinicians quickly and efficiently determine whether a food, drug or chemical substance interacts with estrogen receptors in human cells, Zhao said.

Explore further: New patenting guidelines are needed for biotechnology

More information: "A New Fluorescence Complementation Biosensor for Detection of Estrogenic Compounds," onlinelibrary.wiley.com/doi/10.1002/bit.23254/abstract

Related Stories

Researchers improve design of genetic on-off switches

Apr 07, 2005

Researchers at the University of Illinois at Urbana-Champaign have set a new standard in the design and engineering of nuclear hormone receptor-based genetic on-off switches, without causing new problems or aggravating existing ...

Recommended for you

New alfalfa variety resists ravenous local pest

5 hours ago

(Phys.org) —Cornell plant breeders have released a new alfalfa variety with some resistance against the alfalfa snout beetle, which has ravaged alfalfa fields in nine northern New York counties and across ...

New patenting guidelines are needed for biotechnology

23 hours ago

Biotechnology scientists must be aware of the broad patent landscape and push for new patent and licensing guidelines, according to a new paper from Rice University's Baker Institute for Public Policy.

Rainbow trout genome sequenced

Apr 22, 2014

Using fish bred at Washington State University, an international team of researchers has mapped the genetic profile of the rainbow trout, a versatile salmonid whose relatively recent genetic history opens ...

User comments : 0

More news stories

Ravens understand the relations among others

Like many social mammals, ravens form different types of social relationships – they may be friends, kin, or partners and they also form strict dominance relations. From a cognitive perspective, understanding ...

Classifying sequence variants in human disease

Sequencing an entire human genome is faster and cheaper than ever before, leading to an explosion of studies comparing the genomes of people with and without a given disease. Often clinicians and researchers studying genetic ...