Live from the scene: Biochemistry in action

Aug 08, 2011
The new microscope enables scientists to watch and measure fast-moving molecules. Credit: EMBL/H. Neves

Researchers can now watch molecules move in living cells, literally millisecond by millisecond, thanks to a new microscope developed by scientists at the European Molecular Biology Laboratory (EMBL) in Heidelberg, Germany. Published online today in Nature Biotechnology, the new technique provides insights into processes that were so far invisible.

By combining light-sheet microscopy and single molecule spectroscopy, the new can record the fluorescence of every pixel within view, and take snapshots at intervals of less than one millisecond. With it, scientists can watch and measure very fast processes, such as the way molecules diffuse, across a whole sample, even one containing several . This is a considerable step up from previous techniques, based on confocal , in which researchers could only observe at most a few isolated spots in a sample at a time.

The new microscope enables scientists to watch and measure fast-moving molecules. Credit: EMBL/H. Neves

"It's really visual ," says Malte Wachsmuth, who developed the microscope at EMBL. "We can follow fluorescently-tagged molecules in whole live cells, in 3D, and see how their biochemical properties, like interaction rates and binding affinities, vary throughout the cell."

Until now, chromatin – the combination of DNA, RNA and proteins that forms chromosomes – had been observed in two states: wound tightly together, with most of its DNA inaccessible to the cell's gene-reading machinery, in which case it is called heterochromatin; or loosely packed and easily readable, called euchromatin. But when they used the new microscope to measure the interaction between chromatin and a protein called HP1-α, the EMBL scientists made an intriguing discovery.

"In some areas that look like euchromatin, HP1-α behaves as it would in the presence of heterochromatin," says Michael Knop, now at the University of Heidelberg, Germany. "This suggests that chromatin may also exist in an intermediate state between hetero- and euchromatin, which was not observable before in living cells."

By providing a tool to watch that move very fast, the scientists believe this new microscope will help to investigate processes ranging from the role of growth hormones in cancer to the regulation of cell division and signalling and the patterning of tissue development in the embryo.

Explore further: Scientists find key to te first cell differentiation in mammals

Related Stories

New role for phosphorylation in heterochromatin

Mar 09, 2011

A great many cellular processes are switched on or off by the modification of a given enzyme or other protein by addition of a phosphate molecule, known as phosphorylation. This regulatory activity occurs ...

The transparent organism

Mar 31, 2005

A novel high-tech microscope will be brought to the marketplace, giving laboratories everywhere fascinating new insights into living organisms. EMBLEM Technology Transfer GmbH [EMBLEM], the commercial entity of the European ...

New Microscope Gives Scientists 3D Views of Living Organisms

Aug 12, 2004

Physicists at the European Molecular Biology Laboratory (EMBL) have developed a state-of-the-art microscope that gives scientists a much deeper look into living organisms than ever before. The new technology will undoubte ...

Recommended for you

Research helps identify memory molecules

10 hours ago

A newly discovered method of identifying the creation of proteins in the body could lead to new insights into how learning and memories are impaired in Alzheimer's disease.

Computer simulations visualize ion flux

11 hours ago

Ion channels are involved in many physiological and pathophysiological processes throughout the human body. A young team of researchers led by pharmacologist Anna Stary-Weinzinger from the Department of Pharmacology ...

Neutron diffraction sheds light on photosynthesis

11 hours ago

Scientists from ILL and CEA-Grenoble have improved our understanding of the way plants evolved to take advantage of sunlight. Using cold neutron diffraction, they analysed the structure of thylakoid lipids found in plant ...

DNA may have had humble beginnings as nutrient carrier

Sep 01, 2014

New research intriguingly suggests that DNA, the genetic information carrier for humans and other complex life, might have had a rather humbler origin. In some microbes, a study shows, DNA pulls double duty ...

Central biobank for drug research

Sep 01, 2014

For the development of new drugs it is crucial to work with stem cells, as these allow scientists to study the effects of new active pharmaceutical ingredients. But it has always been difficult to derive ...

User comments : 0